{"title":"钢筋混凝土柱的优化设计","authors":"","doi":"10.4018/978-1-7998-2664-4.ch004","DOIUrl":null,"url":null,"abstract":"In the design of reinforced concrete (RC) columns, ductility is provided by allowing yielding of steel in the part of section under tensile stresses. This situation cannot be provided for RC columns since sections of columns are generally under compressive stresses resulting from axial loading including weight of all upper stories, flexural moments, and shear forces. To practically provide ductility, axial force is limited, and stirrups are densely designed. These rules are given in design regulations and must be checked during optimization. In this chapter, an optimum design methodology for biaxial loaded column is presented. Uniaxial loaded column methodology is given with the computer code. Finally, the slenderness effects are presented via ACI 318: Building code requirements for structural concrete and optimum results are given for several numerical cases using various metaheuristic algorithms.","PeriodicalId":170757,"journal":{"name":"Metaheuristic Approaches for Optimum Design of Reinforced Concrete Structures","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimum Design of Reinforced Concrete Columns\",\"authors\":\"\",\"doi\":\"10.4018/978-1-7998-2664-4.ch004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the design of reinforced concrete (RC) columns, ductility is provided by allowing yielding of steel in the part of section under tensile stresses. This situation cannot be provided for RC columns since sections of columns are generally under compressive stresses resulting from axial loading including weight of all upper stories, flexural moments, and shear forces. To practically provide ductility, axial force is limited, and stirrups are densely designed. These rules are given in design regulations and must be checked during optimization. In this chapter, an optimum design methodology for biaxial loaded column is presented. Uniaxial loaded column methodology is given with the computer code. Finally, the slenderness effects are presented via ACI 318: Building code requirements for structural concrete and optimum results are given for several numerical cases using various metaheuristic algorithms.\",\"PeriodicalId\":170757,\"journal\":{\"name\":\"Metaheuristic Approaches for Optimum Design of Reinforced Concrete Structures\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metaheuristic Approaches for Optimum Design of Reinforced Concrete Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-2664-4.ch004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaheuristic Approaches for Optimum Design of Reinforced Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-2664-4.ch004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the design of reinforced concrete (RC) columns, ductility is provided by allowing yielding of steel in the part of section under tensile stresses. This situation cannot be provided for RC columns since sections of columns are generally under compressive stresses resulting from axial loading including weight of all upper stories, flexural moments, and shear forces. To practically provide ductility, axial force is limited, and stirrups are densely designed. These rules are given in design regulations and must be checked during optimization. In this chapter, an optimum design methodology for biaxial loaded column is presented. Uniaxial loaded column methodology is given with the computer code. Finally, the slenderness effects are presented via ACI 318: Building code requirements for structural concrete and optimum results are given for several numerical cases using various metaheuristic algorithms.