基于本体的文本挖掘框架

LDV Forum Pub Date : 2005-07-01 DOI:10.21248/jlcl.20.2005.70
Stephan Bloehdorn, P. Cimiano, A. Hotho, Steffen Staab
{"title":"基于本体的文本挖掘框架","authors":"Stephan Bloehdorn, P. Cimiano, A. Hotho, Steffen Staab","doi":"10.21248/jlcl.20.2005.70","DOIUrl":null,"url":null,"abstract":"Structuring of text document knowledge frequently appears either by ontologies and metadata or by automatic (un-)unsupervised text categorization. This paper describes our integrated framework OTTO (OnTology-based Text mining framewOrk). OTTO uses text mining to learn the target ontology from text documents and uses then the same target ontology in order to improve the effectiveness of both supervised and unsupervised text categorization approaches.","PeriodicalId":346957,"journal":{"name":"LDV Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"An Ontology-based Framework for Text Mining\",\"authors\":\"Stephan Bloehdorn, P. Cimiano, A. Hotho, Steffen Staab\",\"doi\":\"10.21248/jlcl.20.2005.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structuring of text document knowledge frequently appears either by ontologies and metadata or by automatic (un-)unsupervised text categorization. This paper describes our integrated framework OTTO (OnTology-based Text mining framewOrk). OTTO uses text mining to learn the target ontology from text documents and uses then the same target ontology in order to improve the effectiveness of both supervised and unsupervised text categorization approaches.\",\"PeriodicalId\":346957,\"journal\":{\"name\":\"LDV Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LDV Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.20.2005.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LDV Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.20.2005.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

文本文档知识的结构化通常是通过本体和元数据或自动(无)监督文本分类来实现的。本文描述了我们的集成框架OTTO(基于本体的文本挖掘框架)。OTTO使用文本挖掘从文本文档中学习目标本体,然后使用相同的目标本体,以提高监督和无监督文本分类方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Ontology-based Framework for Text Mining
Structuring of text document knowledge frequently appears either by ontologies and metadata or by automatic (un-)unsupervised text categorization. This paper describes our integrated framework OTTO (OnTology-based Text mining framewOrk). OTTO uses text mining to learn the target ontology from text documents and uses then the same target ontology in order to improve the effectiveness of both supervised and unsupervised text categorization approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satzlänge: Definitionen, Häufigkeiten, Modelle (Am Beispiel slowenischer Prosatexte) A hybrid approach to resolve nominal anaphora Evaluating the Quality of Automatically Extracted Synonymy Information OWL ontologies as a resource for discourse parsing An ontology of linguistic annotations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1