Runmei Ma, J. Ban, Qing Wang, Yayi Zhang, Yang Yang, Shenshen Li, Wen-Qiang Shi, Tiantian Li
{"title":"基于多变量随机森林模型的2005-2017年中国全覆盖1 km日环境PM 2.5和o3浓度","authors":"Runmei Ma, J. Ban, Qing Wang, Yayi Zhang, Yang Yang, Shenshen Li, Wen-Qiang Shi, Tiantian Li","doi":"10.5281/ZENODO.4009308","DOIUrl":null,"url":null,"abstract":"Abstract. The health risks of fine particulate matter (PM2.5) and ambient ozone (O3) have been widely recognized in recent years. An accurate estimate of PM2.5 and O3 exposures is important for supporting health risk analysis and environmental policy-making. The aim of our study was to construct random forest models with high-performance, and estimate daily average PM2.5 concentration and O3 daily maximum 8 h average concentration (O3-8hmax) of China in 2005–2017 at a spatial resolution of 1 km×1 km. The model variables included meteorological variables, satellite data, chemical transport model output, geographic variables and socioeconomic variables. Random forest model based on ten-fold cross validation was established, and spatial and temporal validations were performed to evaluate the model performance. According to our sample-based division method, the daily, monthly and yearly simulations of PM2.5 gave average model fitting R2 values of 0.85, 0.88 and 0.90, respectively; these R2 values were 0.77, 0.77, and 0.69 for O3-8hmax, respectively. The meteorological variables and their lagged values can significantly affect both PM2.5 and O3-8hmax simulations. During 2005–2017, PM2.5 exhibited an overall downward trend, while ambient O3 experienced an upward trend. Whilst the spatial patterns of PM2.5 and O3-8hmax barely changed between 2005 and 2017, the temporal trend had spatial characteristic. The dataset is accessible to the public at https://doi.org/10.5281/zenodo.4009308 , and the shared data set of Chinese Environmental Public Health Tracking: CEPHT ( https://cepht.niehs.cn:8282/developSDS3.html ).","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Full-coverage 1 km daily ambient PM 2.5 and O 3 concentrations of China in 2005–2017 based on multi-variable random forest model\",\"authors\":\"Runmei Ma, J. Ban, Qing Wang, Yayi Zhang, Yang Yang, Shenshen Li, Wen-Qiang Shi, Tiantian Li\",\"doi\":\"10.5281/ZENODO.4009308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The health risks of fine particulate matter (PM2.5) and ambient ozone (O3) have been widely recognized in recent years. An accurate estimate of PM2.5 and O3 exposures is important for supporting health risk analysis and environmental policy-making. The aim of our study was to construct random forest models with high-performance, and estimate daily average PM2.5 concentration and O3 daily maximum 8 h average concentration (O3-8hmax) of China in 2005–2017 at a spatial resolution of 1 km×1 km. The model variables included meteorological variables, satellite data, chemical transport model output, geographic variables and socioeconomic variables. Random forest model based on ten-fold cross validation was established, and spatial and temporal validations were performed to evaluate the model performance. According to our sample-based division method, the daily, monthly and yearly simulations of PM2.5 gave average model fitting R2 values of 0.85, 0.88 and 0.90, respectively; these R2 values were 0.77, 0.77, and 0.69 for O3-8hmax, respectively. The meteorological variables and their lagged values can significantly affect both PM2.5 and O3-8hmax simulations. During 2005–2017, PM2.5 exhibited an overall downward trend, while ambient O3 experienced an upward trend. Whilst the spatial patterns of PM2.5 and O3-8hmax barely changed between 2005 and 2017, the temporal trend had spatial characteristic. The dataset is accessible to the public at https://doi.org/10.5281/zenodo.4009308 , and the shared data set of Chinese Environmental Public Health Tracking: CEPHT ( https://cepht.niehs.cn:8282/developSDS3.html ).\",\"PeriodicalId\":326085,\"journal\":{\"name\":\"Earth System Science Data Discussions\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.4009308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.4009308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full-coverage 1 km daily ambient PM 2.5 and O 3 concentrations of China in 2005–2017 based on multi-variable random forest model
Abstract. The health risks of fine particulate matter (PM2.5) and ambient ozone (O3) have been widely recognized in recent years. An accurate estimate of PM2.5 and O3 exposures is important for supporting health risk analysis and environmental policy-making. The aim of our study was to construct random forest models with high-performance, and estimate daily average PM2.5 concentration and O3 daily maximum 8 h average concentration (O3-8hmax) of China in 2005–2017 at a spatial resolution of 1 km×1 km. The model variables included meteorological variables, satellite data, chemical transport model output, geographic variables and socioeconomic variables. Random forest model based on ten-fold cross validation was established, and spatial and temporal validations were performed to evaluate the model performance. According to our sample-based division method, the daily, monthly and yearly simulations of PM2.5 gave average model fitting R2 values of 0.85, 0.88 and 0.90, respectively; these R2 values were 0.77, 0.77, and 0.69 for O3-8hmax, respectively. The meteorological variables and their lagged values can significantly affect both PM2.5 and O3-8hmax simulations. During 2005–2017, PM2.5 exhibited an overall downward trend, while ambient O3 experienced an upward trend. Whilst the spatial patterns of PM2.5 and O3-8hmax barely changed between 2005 and 2017, the temporal trend had spatial characteristic. The dataset is accessible to the public at https://doi.org/10.5281/zenodo.4009308 , and the shared data set of Chinese Environmental Public Health Tracking: CEPHT ( https://cepht.niehs.cn:8282/developSDS3.html ).