Pemetaan超平面帕达支持向量机

Sekhan Rozaki Kusuma Wardana Tommy Rustandi, Didi Suhaedi, Yurika Pemanasari
{"title":"Pemetaan超平面帕达支持向量机","authors":"Sekhan Rozaki Kusuma Wardana Tommy Rustandi, Didi Suhaedi, Yurika Pemanasari","doi":"10.29313/bcsm.v3i2.8187","DOIUrl":null,"url":null,"abstract":"Abstrak. Penelitian ini difokuskan pada klasifikasi biner dengan data linear, dengan tujuan untuk memahami penggunaan pemetaan hyperplane dalam klasifikasi data menggunakan SVM dan bagaimana contoh penerapannya dalam dunia nyata. Metode penelitian yang digunakan meliputi studi literatur terhadap contoh-contoh penerapan SVM dengan pemetaan hyperplane. Hasil penelitian menunjukkan bahwa pemetaan hyperplane penting dalam klasifikasi data dengan SVM. Pemetaan ini memungkinkan SVM untuk memisahkan dua kelas dengan optimal dalam ruang fitur yang lebih tinggi, sehingga meningkatkan performa klasifikasi. Contoh-contoh penerapan pemetaan hyperplane pada SVM dalam dunia nyata juga berhasil diidentifikasi, yang menggambarkan bagaimana SVM dengan pemetaan hyperplane dapat digunakan dalam berbagai masalah klasifikasi dalam kehidupan sehari-hari dalam bentuk numerik sebagai studi kasus pada penelitian ini. SVM dapat digunakan untuk klasifikasi dalam berbagai konteks, termasuk multikelas dan nonlinear, penelitian ini hanya memfokuskan pada klasifikasi biner dengan data linear. Selain itu, penelitian ini tidak secara mendalam membahas penanganan data yang tidak seimbang atau fitur tidak langsung dalam konteks klasifikasi dengan SVM. \nAbstract. This research was made on binary classification with linear data, with the aim of understanding the use of hyperplane regularity in data classification using SVM and how it is applied in the real world. The research method used includes a literature study of examples of SVM implementation with hyperplane recession. The results of this research show that the hyperplane is important in classifying data with SVM. This mapping allows the SVM to optimally unify the two classes in a higher feature space, thereby increasing classification performance. Examples of the application of hyperplane earthquakes to SVM in the real world were also identified, which illustrates how SVM with hyperplane earthquakes can be used in various classification problems in everyday life in numerical form as a case study in this study. SVM can be used for classification in various contexts, including multiclass and nonlinear, this study only focuses on binary classification with linear data. In addition, this research does not deeply discuss unbalanced handling data or indirect features in the context of classification with SVM.","PeriodicalId":243556,"journal":{"name":"Bandung Conference Series: Mathematics","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pemetaan Hyperplane Pada Support Vector Machine\",\"authors\":\"Sekhan Rozaki Kusuma Wardana Tommy Rustandi, Didi Suhaedi, Yurika Pemanasari\",\"doi\":\"10.29313/bcsm.v3i2.8187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstrak. Penelitian ini difokuskan pada klasifikasi biner dengan data linear, dengan tujuan untuk memahami penggunaan pemetaan hyperplane dalam klasifikasi data menggunakan SVM dan bagaimana contoh penerapannya dalam dunia nyata. Metode penelitian yang digunakan meliputi studi literatur terhadap contoh-contoh penerapan SVM dengan pemetaan hyperplane. Hasil penelitian menunjukkan bahwa pemetaan hyperplane penting dalam klasifikasi data dengan SVM. Pemetaan ini memungkinkan SVM untuk memisahkan dua kelas dengan optimal dalam ruang fitur yang lebih tinggi, sehingga meningkatkan performa klasifikasi. Contoh-contoh penerapan pemetaan hyperplane pada SVM dalam dunia nyata juga berhasil diidentifikasi, yang menggambarkan bagaimana SVM dengan pemetaan hyperplane dapat digunakan dalam berbagai masalah klasifikasi dalam kehidupan sehari-hari dalam bentuk numerik sebagai studi kasus pada penelitian ini. SVM dapat digunakan untuk klasifikasi dalam berbagai konteks, termasuk multikelas dan nonlinear, penelitian ini hanya memfokuskan pada klasifikasi biner dengan data linear. Selain itu, penelitian ini tidak secara mendalam membahas penanganan data yang tidak seimbang atau fitur tidak langsung dalam konteks klasifikasi dengan SVM. \\nAbstract. This research was made on binary classification with linear data, with the aim of understanding the use of hyperplane regularity in data classification using SVM and how it is applied in the real world. The research method used includes a literature study of examples of SVM implementation with hyperplane recession. The results of this research show that the hyperplane is important in classifying data with SVM. This mapping allows the SVM to optimally unify the two classes in a higher feature space, thereby increasing classification performance. Examples of the application of hyperplane earthquakes to SVM in the real world were also identified, which illustrates how SVM with hyperplane earthquakes can be used in various classification problems in everyday life in numerical form as a case study in this study. SVM can be used for classification in various contexts, including multiclass and nonlinear, this study only focuses on binary classification with linear data. In addition, this research does not deeply discuss unbalanced handling data or indirect features in the context of classification with SVM.\",\"PeriodicalId\":243556,\"journal\":{\"name\":\"Bandung Conference Series: Mathematics\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bandung Conference Series: Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29313/bcsm.v3i2.8187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bandung Conference Series: Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29313/bcsm.v3i2.8187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抽象。本研究的重点是线性数据的二进制分类,目的是理解使用SVM的数据分类中使用超平面地图的使用,以及现实世界中的例子是如何应用的。使用的研究方法包括对SVM与超平面映射应用的例子的文献研究。研究结果表明,超平面映射在SVM的数据分类中是非常重要的。此映射允许SVM将两个类最佳地分离在高级功能空间,从而提高分类性能。现实世界中SVM的超平面地图应用的例子也被成功地识别出来,描述了SVM和超平面地图如何用于日常生活中的数值分类问题,作为本研究的案例研究。SVM可以在各种背景下用于分类,包括多类和非线性,这项研究只集中于线性数据的二进制分类。此外,本研究没有深入讨论与SVM分类背景下不平衡的数据处理或间接特征。抽象。这项研究是根据线性数据进行的分类分类,通过SVM,了解利用SVM和它在现实世界中的应用数据中使用的常规超级飞机的使用。这项研究的方法包括对SVM利用高对偶重力反应的研究。这项研究的结果表明,超平面在SVM的压缩数据中是重要的。这一段将SVM提升到最乐观的状态,以增加经典的表现。揭示现实世界中SVM的超平面应用程序也被确定,这说明了SVM与超平面地震的可变经典关系如何在这种研究中以新形式出现在日常生活中的问题中。SVM可以用于各种变量概念的分类,包括多级和非线性,这个研究只是基于线性数据的二元分类的焦点。此外,这项研究在SVM的经典语境中没有广泛的处理或间接功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pemetaan Hyperplane Pada Support Vector Machine
Abstrak. Penelitian ini difokuskan pada klasifikasi biner dengan data linear, dengan tujuan untuk memahami penggunaan pemetaan hyperplane dalam klasifikasi data menggunakan SVM dan bagaimana contoh penerapannya dalam dunia nyata. Metode penelitian yang digunakan meliputi studi literatur terhadap contoh-contoh penerapan SVM dengan pemetaan hyperplane. Hasil penelitian menunjukkan bahwa pemetaan hyperplane penting dalam klasifikasi data dengan SVM. Pemetaan ini memungkinkan SVM untuk memisahkan dua kelas dengan optimal dalam ruang fitur yang lebih tinggi, sehingga meningkatkan performa klasifikasi. Contoh-contoh penerapan pemetaan hyperplane pada SVM dalam dunia nyata juga berhasil diidentifikasi, yang menggambarkan bagaimana SVM dengan pemetaan hyperplane dapat digunakan dalam berbagai masalah klasifikasi dalam kehidupan sehari-hari dalam bentuk numerik sebagai studi kasus pada penelitian ini. SVM dapat digunakan untuk klasifikasi dalam berbagai konteks, termasuk multikelas dan nonlinear, penelitian ini hanya memfokuskan pada klasifikasi biner dengan data linear. Selain itu, penelitian ini tidak secara mendalam membahas penanganan data yang tidak seimbang atau fitur tidak langsung dalam konteks klasifikasi dengan SVM. Abstract. This research was made on binary classification with linear data, with the aim of understanding the use of hyperplane regularity in data classification using SVM and how it is applied in the real world. The research method used includes a literature study of examples of SVM implementation with hyperplane recession. The results of this research show that the hyperplane is important in classifying data with SVM. This mapping allows the SVM to optimally unify the two classes in a higher feature space, thereby increasing classification performance. Examples of the application of hyperplane earthquakes to SVM in the real world were also identified, which illustrates how SVM with hyperplane earthquakes can be used in various classification problems in everyday life in numerical form as a case study in this study. SVM can be used for classification in various contexts, including multiclass and nonlinear, this study only focuses on binary classification with linear data. In addition, this research does not deeply discuss unbalanced handling data or indirect features in the context of classification with SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penggunaan Rstudio dalam Pembuatan Aplikasi Peramalan Harga Emas dengan Metode Double Exponential Smooting Holt Analisis Panjang Populasi dan Banyak Generasi Algoritma Genetika pada Traveling Salesman Problem Perbandingan Metode Mean-Semivariance dan Mean Absolute Deviation Untuk Menentukan Portfolio Optimal Menggunakan Python Path Analysis dan Penerapannya pada Bantuan Sosial Penerapan Metode Mixed Autoregressive and Moving Average Untuk Peramalan Harga Saham LQ45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1