基于改进脉冲耦合神经网络的原子力显微镜图像分割

Ying Chang, Yinan Wu, Yongchun Fang, Zhi Fan
{"title":"基于改进脉冲耦合神经网络的原子力显微镜图像分割","authors":"Ying Chang, Yinan Wu, Yongchun Fang, Zhi Fan","doi":"10.1109/RCAR54675.2022.9872210","DOIUrl":null,"url":null,"abstract":"In this study, a novel method combining pulse coupled neural network (PCNN) and social network search (SNS) is proposed to achieve accurate image segmentation for an atomic force microscopy (AFM). The proposed method utilizes the biological visual characteristics of PCNN and the solution space search ability of SNS to determine the optimal key parameters, which can address the issue of incorrect image segmentation caused by different topographic heights of specimens in an AFM image. In the tests, the performance of the proposed method is compared with the traditional PCNN method and the Otsu method, which demonstrates that the proposed method can automatically segment the AFM image with higher accuracy and robustness.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Segmentation Based on An Improved Pulse Coupled Neural Network for Atomic Force Microscopy\",\"authors\":\"Ying Chang, Yinan Wu, Yongchun Fang, Zhi Fan\",\"doi\":\"10.1109/RCAR54675.2022.9872210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel method combining pulse coupled neural network (PCNN) and social network search (SNS) is proposed to achieve accurate image segmentation for an atomic force microscopy (AFM). The proposed method utilizes the biological visual characteristics of PCNN and the solution space search ability of SNS to determine the optimal key parameters, which can address the issue of incorrect image segmentation caused by different topographic heights of specimens in an AFM image. In the tests, the performance of the proposed method is compared with the traditional PCNN method and the Otsu method, which demonstrates that the proposed method can automatically segment the AFM image with higher accuracy and robustness.\",\"PeriodicalId\":304963,\"journal\":{\"name\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR54675.2022.9872210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种结合脉冲耦合神经网络(PCNN)和社交网络搜索(SNS)的原子力显微镜(AFM)图像精确分割方法。该方法利用PCNN的生物视觉特性和SNS的解空间搜索能力来确定最优关键参数,解决了AFM图像中由于标本地形高度不同而导致的图像分割错误问题。在实验中,将该方法与传统的PCNN方法和Otsu方法进行了性能比较,结果表明该方法具有更高的AFM图像自动分割精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Segmentation Based on An Improved Pulse Coupled Neural Network for Atomic Force Microscopy
In this study, a novel method combining pulse coupled neural network (PCNN) and social network search (SNS) is proposed to achieve accurate image segmentation for an atomic force microscopy (AFM). The proposed method utilizes the biological visual characteristics of PCNN and the solution space search ability of SNS to determine the optimal key parameters, which can address the issue of incorrect image segmentation caused by different topographic heights of specimens in an AFM image. In the tests, the performance of the proposed method is compared with the traditional PCNN method and the Otsu method, which demonstrates that the proposed method can automatically segment the AFM image with higher accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depth Recognition of Hard Inclusions in Tissue Phantoms for Robotic Palpation Design of a Miniaturized Magnetic Actuation System for Motion Control of Micro/Nano Swimming Robots Energy Shaping Based Nonlinear Anti-Swing Controller for Double-Pendulum Rotary Crane with Distributed-Mass Beams RCAR 2022 Cover Page Design and Implementation of Robot Middleware Service Integration Framework Based on DDS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1