Haley G. Abramson, Eli Curry, K. Sampath, James P. Wissman, Griffin Mess, Rasika Thombre, Smruti Mahapatra, Fariba Aghabaglou, N. Theodore, A. Pustavoitau, A. Manbachi
{"title":"面向医疗点医疗的通用设备:通过超声成像长期监测局部血管流动的定制换能器","authors":"Haley G. Abramson, Eli Curry, K. Sampath, James P. Wissman, Griffin Mess, Rasika Thombre, Smruti Mahapatra, Fariba Aghabaglou, N. Theodore, A. Pustavoitau, A. Manbachi","doi":"10.1115/dmd2022-1006","DOIUrl":null,"url":null,"abstract":"\n Universalized point-of-care medicine demands long-term, automated, and ubiquitous solutions to monitoring patients. Ultrasound imaging can be found in nearly all fields of healthcare. Therefore, developing a platform for continuous ultrasound acquisition could transform the point-of-care arena. However, long-term monitoring using ultrasound imaging requires both the simplification of large quantities of data and a hands-free, flexible device. Here, we reduce data-heavy spectral Doppler imaging by tracking local vascular flow in vitro and in vivo as a single, clinically interpretable value over time. Imaging is performed using a novel probe designed specifically for continuous monitoring with ultrasound. This semi-conformal specialty probe was fabricated by removing the plastic casing of a commercially available probe, bending the tip of the piezoelectric transducer head at a nearly ninety-degree angle, then casting the electronic components in silicone rubber, which allowed the probe to rest comfortably on any surface. No statistically significant difference existed when comparing the Doppler fluid velocity detected by the specialty probe with two commercial probes, where velocity directly leads to calculation of vascular flow. Additionally, continuously tracked velocity over the period of an hour and during periods of fluctuating flow rates demonstrated the potential for accurate, long-term monitoring using this ultrasound device. Thus, translating this technology from bench to bedside could provide a universal solution to point-of-care medicine.","PeriodicalId":236105,"journal":{"name":"2022 Design of Medical Devices Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards A Universal Device for Point-of-Care Medicine: A Custom Transducer for Long-Term Monitoring of Local Vascular Flow Via Ultrasound Imaging\",\"authors\":\"Haley G. Abramson, Eli Curry, K. Sampath, James P. Wissman, Griffin Mess, Rasika Thombre, Smruti Mahapatra, Fariba Aghabaglou, N. Theodore, A. Pustavoitau, A. Manbachi\",\"doi\":\"10.1115/dmd2022-1006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Universalized point-of-care medicine demands long-term, automated, and ubiquitous solutions to monitoring patients. Ultrasound imaging can be found in nearly all fields of healthcare. Therefore, developing a platform for continuous ultrasound acquisition could transform the point-of-care arena. However, long-term monitoring using ultrasound imaging requires both the simplification of large quantities of data and a hands-free, flexible device. Here, we reduce data-heavy spectral Doppler imaging by tracking local vascular flow in vitro and in vivo as a single, clinically interpretable value over time. Imaging is performed using a novel probe designed specifically for continuous monitoring with ultrasound. This semi-conformal specialty probe was fabricated by removing the plastic casing of a commercially available probe, bending the tip of the piezoelectric transducer head at a nearly ninety-degree angle, then casting the electronic components in silicone rubber, which allowed the probe to rest comfortably on any surface. No statistically significant difference existed when comparing the Doppler fluid velocity detected by the specialty probe with two commercial probes, where velocity directly leads to calculation of vascular flow. Additionally, continuously tracked velocity over the period of an hour and during periods of fluctuating flow rates demonstrated the potential for accurate, long-term monitoring using this ultrasound device. Thus, translating this technology from bench to bedside could provide a universal solution to point-of-care medicine.\",\"PeriodicalId\":236105,\"journal\":{\"name\":\"2022 Design of Medical Devices Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Design of Medical Devices Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dmd2022-1006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2022-1006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards A Universal Device for Point-of-Care Medicine: A Custom Transducer for Long-Term Monitoring of Local Vascular Flow Via Ultrasound Imaging
Universalized point-of-care medicine demands long-term, automated, and ubiquitous solutions to monitoring patients. Ultrasound imaging can be found in nearly all fields of healthcare. Therefore, developing a platform for continuous ultrasound acquisition could transform the point-of-care arena. However, long-term monitoring using ultrasound imaging requires both the simplification of large quantities of data and a hands-free, flexible device. Here, we reduce data-heavy spectral Doppler imaging by tracking local vascular flow in vitro and in vivo as a single, clinically interpretable value over time. Imaging is performed using a novel probe designed specifically for continuous monitoring with ultrasound. This semi-conformal specialty probe was fabricated by removing the plastic casing of a commercially available probe, bending the tip of the piezoelectric transducer head at a nearly ninety-degree angle, then casting the electronic components in silicone rubber, which allowed the probe to rest comfortably on any surface. No statistically significant difference existed when comparing the Doppler fluid velocity detected by the specialty probe with two commercial probes, where velocity directly leads to calculation of vascular flow. Additionally, continuously tracked velocity over the period of an hour and during periods of fluctuating flow rates demonstrated the potential for accurate, long-term monitoring using this ultrasound device. Thus, translating this technology from bench to bedside could provide a universal solution to point-of-care medicine.