局部特征耦合全局表征的药物-靶标相互作用预测

Tianyu Wang, Wenming Yang, Jie Chen, Yonghong Tian, Dongqing Wei
{"title":"局部特征耦合全局表征的药物-靶标相互作用预测","authors":"Tianyu Wang, Wenming Yang, Jie Chen, Yonghong Tian, Dongqing Wei","doi":"10.1109/BIBM55620.2022.9995344","DOIUrl":null,"url":null,"abstract":"Drug-target interaction(DTI) prediction is one of the most important topics in drug design and drug development, and deep learning approaches have achieved state-of-the-art performance in this field. However, the current methods are difficult to successfully combine the local and global features of drug molecules and protein sequences, while ignoring the modeling of complicated interaction mechanisms, which leads to a certain limitation of prediction performance. To overcome this barrier, we propose an end-to-end method based on Convolutional Neural Network (CNN) and Transformer to predict DTI problems, named ConformerDTI. The CNN and Transformer branches extract features from the simplified molecular input line entry system (SMILES) string of drugs and the amino acid sequence of proteins, respectively. The local and global features are coupled by the mutual transfer of the two branches through cross attention. Decoupling of local and global features in parallel leverages CNN’s power in extracting local features as well as the efficiency of Transformer at global processing. I n addition, ConformerDTI exploits the convolutional interaction network to model the interaction mechanism, both drugs and targets are convoluted by dynamic filters generated based on each other. Experimental results demonstrate that our model has better prediction performance than the most advanced deep learning methods on three different datasets. Furthermore, this performance improvement was validated by ablation experiments.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ConformerDTI: Local Features Coupling Global Representations for Drug–Target Interaction Prediction\",\"authors\":\"Tianyu Wang, Wenming Yang, Jie Chen, Yonghong Tian, Dongqing Wei\",\"doi\":\"10.1109/BIBM55620.2022.9995344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug-target interaction(DTI) prediction is one of the most important topics in drug design and drug development, and deep learning approaches have achieved state-of-the-art performance in this field. However, the current methods are difficult to successfully combine the local and global features of drug molecules and protein sequences, while ignoring the modeling of complicated interaction mechanisms, which leads to a certain limitation of prediction performance. To overcome this barrier, we propose an end-to-end method based on Convolutional Neural Network (CNN) and Transformer to predict DTI problems, named ConformerDTI. The CNN and Transformer branches extract features from the simplified molecular input line entry system (SMILES) string of drugs and the amino acid sequence of proteins, respectively. The local and global features are coupled by the mutual transfer of the two branches through cross attention. Decoupling of local and global features in parallel leverages CNN’s power in extracting local features as well as the efficiency of Transformer at global processing. I n addition, ConformerDTI exploits the convolutional interaction network to model the interaction mechanism, both drugs and targets are convoluted by dynamic filters generated based on each other. Experimental results demonstrate that our model has better prediction performance than the most advanced deep learning methods on three different datasets. Furthermore, this performance improvement was validated by ablation experiments.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

药物-靶标相互作用(DTI)预测是药物设计和药物开发中最重要的主题之一,深度学习方法在这一领域取得了最先进的性能。然而,目前的方法难以成功地将药物分子和蛋白质序列的局部和全局特征结合起来,而忽略了对复杂相互作用机制的建模,导致预测性能有一定的局限性。为了克服这一障碍,我们提出了一种基于卷积神经网络(CNN)和Transformer的端到端DTI问题预测方法,命名为ConformerDTI。CNN分支和Transformer分支分别从药物的简化分子输入线输入系统(SMILES)和蛋白质的氨基酸序列中提取特征。局部和全局特征通过两个分支的交叉关注相互转移而耦合。局部和全局特征并行解耦利用了CNN提取局部特征的能力以及Transformer在全局处理时的效率。此外,ConformerDTI利用卷积相互作用网络对相互作用机制进行建模,药物和靶点都通过基于彼此生成的动态滤波器进行卷积。实验结果表明,在三种不同的数据集上,我们的模型比最先进的深度学习方法具有更好的预测性能。并通过烧蚀实验验证了该性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ConformerDTI: Local Features Coupling Global Representations for Drug–Target Interaction Prediction
Drug-target interaction(DTI) prediction is one of the most important topics in drug design and drug development, and deep learning approaches have achieved state-of-the-art performance in this field. However, the current methods are difficult to successfully combine the local and global features of drug molecules and protein sequences, while ignoring the modeling of complicated interaction mechanisms, which leads to a certain limitation of prediction performance. To overcome this barrier, we propose an end-to-end method based on Convolutional Neural Network (CNN) and Transformer to predict DTI problems, named ConformerDTI. The CNN and Transformer branches extract features from the simplified molecular input line entry system (SMILES) string of drugs and the amino acid sequence of proteins, respectively. The local and global features are coupled by the mutual transfer of the two branches through cross attention. Decoupling of local and global features in parallel leverages CNN’s power in extracting local features as well as the efficiency of Transformer at global processing. I n addition, ConformerDTI exploits the convolutional interaction network to model the interaction mechanism, both drugs and targets are convoluted by dynamic filters generated based on each other. Experimental results demonstrate that our model has better prediction performance than the most advanced deep learning methods on three different datasets. Furthermore, this performance improvement was validated by ablation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for associating structural variants with cell-specific transcription factors and histone modifications in defect phenotypes Secure Password Using EEG-based BrainPrint System: Unlock Smartphone Password Using Brain-Computer Interface Technology On functional annotation with gene co-expression networks ST-ChIP: Accurate prediction of spatiotemporal ChIP-seq data with recurrent neural networks Discovering the Knowledge in Unstructured Early Drug Development Data Using NLP and Advanced Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1