等几何分析在压电材料作动贴片的固体功能梯度材料板主动控制中的应用

K. Nguyen, N. Tien, N. Hung, Vu Cong Hoa
{"title":"等几何分析在压电材料作动贴片的固体功能梯度材料板主动控制中的应用","authors":"K. Nguyen, N. Tien, N. Hung, Vu Cong Hoa","doi":"10.32508/stdjet.v2isi2.493","DOIUrl":null,"url":null,"abstract":"This paper applies isogeometric analysis (IGA) to simulate active control of the functionally graded material (FGM) plates by using piezoelectric material patches. This control helps to reduce the deflection of the plate under the effect of static load, which makes the structure more resistant to loading. IGA is built on the non-uniform rational basis spline (NURBS) basic function with many advantages such as: describing geometry exactly by approximating by higher order function and directly using this function to approach procedure. Furthermore, NURBS geometry has mesh flexibility and high continuity between elements, making the problem highly accurate. Three-dimensional model for plate-like structure consists of upper and lower layers made of piezoelectric materials, the middle layer is FGM. The obtained results will be verified with the published results to prove the efficiency of the proposed method for this problem. Through the obtained results, it is shown that IGA is used effectively for the active control problem by piezoelectric patches to reduce the displacement of FGM plates. The efficiency shown when using a small number of degrees of freedom but still ensuring the solution has accurate results when compared with the reference solution.","PeriodicalId":205539,"journal":{"name":"Science & Technology Development Journal - Engineering and Technology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application of isogeometric analysis for active control the solid functionally graded material plates with actuator patches using piezoelectric material\",\"authors\":\"K. Nguyen, N. Tien, N. Hung, Vu Cong Hoa\",\"doi\":\"10.32508/stdjet.v2isi2.493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper applies isogeometric analysis (IGA) to simulate active control of the functionally graded material (FGM) plates by using piezoelectric material patches. This control helps to reduce the deflection of the plate under the effect of static load, which makes the structure more resistant to loading. IGA is built on the non-uniform rational basis spline (NURBS) basic function with many advantages such as: describing geometry exactly by approximating by higher order function and directly using this function to approach procedure. Furthermore, NURBS geometry has mesh flexibility and high continuity between elements, making the problem highly accurate. Three-dimensional model for plate-like structure consists of upper and lower layers made of piezoelectric materials, the middle layer is FGM. The obtained results will be verified with the published results to prove the efficiency of the proposed method for this problem. Through the obtained results, it is shown that IGA is used effectively for the active control problem by piezoelectric patches to reduce the displacement of FGM plates. The efficiency shown when using a small number of degrees of freedom but still ensuring the solution has accurate results when compared with the reference solution.\",\"PeriodicalId\":205539,\"journal\":{\"name\":\"Science & Technology Development Journal - Engineering and Technology\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Technology Development Journal - Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32508/stdjet.v2isi2.493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Technology Development Journal - Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32508/stdjet.v2isi2.493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文应用等几何分析方法模拟了压电材料贴片对功能梯度材料(FGM)板的主动控制。这种控制有助于减少板在静载荷作用下的挠度,使结构更耐载荷。IGA是建立在非均匀有理基样条(NURBS)基本函数的基础上的,具有用高阶函数逼近精确描述几何形状和直接用该函数逼近程序等优点。此外,NURBS几何具有网格灵活性和单元之间的高度连续性,使问题具有很高的精度。三维板状结构模型由上下两层由压电材料制成,中间层为FGM。所得结果将与已发表的结果进行验证,以证明所提方法对该问题的有效性。结果表明,IGA有效地解决了压电片的主动控制问题,减小了FGM板的位移。当使用少量的自由度,但仍然确保解决方案有准确的结果时,与参考方案相比,效率显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An application of isogeometric analysis for active control the solid functionally graded material plates with actuator patches using piezoelectric material
This paper applies isogeometric analysis (IGA) to simulate active control of the functionally graded material (FGM) plates by using piezoelectric material patches. This control helps to reduce the deflection of the plate under the effect of static load, which makes the structure more resistant to loading. IGA is built on the non-uniform rational basis spline (NURBS) basic function with many advantages such as: describing geometry exactly by approximating by higher order function and directly using this function to approach procedure. Furthermore, NURBS geometry has mesh flexibility and high continuity between elements, making the problem highly accurate. Three-dimensional model for plate-like structure consists of upper and lower layers made of piezoelectric materials, the middle layer is FGM. The obtained results will be verified with the published results to prove the efficiency of the proposed method for this problem. Through the obtained results, it is shown that IGA is used effectively for the active control problem by piezoelectric patches to reduce the displacement of FGM plates. The efficiency shown when using a small number of degrees of freedom but still ensuring the solution has accurate results when compared with the reference solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Xây dựng hệ thống mô phỏng kiểm soát không lưu tại sân phục vụ trong đào tạo huấn luyện Kinematics modeling analysis of the geostationary satellite monitoring antenna system The Improving properties of Viscose fabric by water repellent finish Reconstruction finite element model of cars Optimal weight design problem of spur gears
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1