QProbe:定位蜂窝通信的瓶颈

Nimantha Thushan Baranasuriya, Vishnu Navda, V. Padmanabhan, Seth Gilbert
{"title":"QProbe:定位蜂窝通信的瓶颈","authors":"Nimantha Thushan Baranasuriya, Vishnu Navda, V. Padmanabhan, Seth Gilbert","doi":"10.1145/2716281.2836118","DOIUrl":null,"url":null,"abstract":"Mobile communication is often frustratingly slow. When a user encounters poor performance, and perhaps even \"confirms\" the same by running a speed test, the tendency is to ascribe blame to the user's last-mile provider. However, as we argue in this paper, a more nuanced approach is needed to identify the location of the bottleneck responsible for the poor performance. Specifically, we focus on the question of whether the bottleneck lies in the cellular last hop (3G or LTE link) or elsewhere in the WAN path. We present QProbe, a tool that takes advantage of the proportional fair (PF) scheduler employed in cellular networks to determine whether queuing is happening at the cellular link. After validating QProbe through simulations and controlled experiments, we present our findings from a measurement study conducted over a 2 month period involving over 600 real-world users across 51 operator networks in 33 countries. We find that, for example, the cellular last-hop link is the bottleneck in 68.9% and 25.7% of the total bottleneck cases for 3G and LTE clients, respectively, suggesting that there is a significant fraction of cases where the poor performance experienced by the user is due to the WAN and could potentially be routed around. Moreover, we show that QProbe detects the bottleneck link location with greater than 85% accuracy for both 3G and LTE clients in our measurement study.","PeriodicalId":169539,"journal":{"name":"Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"QProbe: locating the bottleneck in cellular communication\",\"authors\":\"Nimantha Thushan Baranasuriya, Vishnu Navda, V. Padmanabhan, Seth Gilbert\",\"doi\":\"10.1145/2716281.2836118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile communication is often frustratingly slow. When a user encounters poor performance, and perhaps even \\\"confirms\\\" the same by running a speed test, the tendency is to ascribe blame to the user's last-mile provider. However, as we argue in this paper, a more nuanced approach is needed to identify the location of the bottleneck responsible for the poor performance. Specifically, we focus on the question of whether the bottleneck lies in the cellular last hop (3G or LTE link) or elsewhere in the WAN path. We present QProbe, a tool that takes advantage of the proportional fair (PF) scheduler employed in cellular networks to determine whether queuing is happening at the cellular link. After validating QProbe through simulations and controlled experiments, we present our findings from a measurement study conducted over a 2 month period involving over 600 real-world users across 51 operator networks in 33 countries. We find that, for example, the cellular last-hop link is the bottleneck in 68.9% and 25.7% of the total bottleneck cases for 3G and LTE clients, respectively, suggesting that there is a significant fraction of cases where the poor performance experienced by the user is due to the WAN and could potentially be routed around. Moreover, we show that QProbe detects the bottleneck link location with greater than 85% accuracy for both 3G and LTE clients in our measurement study.\",\"PeriodicalId\":169539,\"journal\":{\"name\":\"Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2716281.2836118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2716281.2836118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

移动通信通常慢得令人沮丧。当用户遇到糟糕的性能,甚至可能通过运行速度测试来“确认”同样的问题时,倾向于将责任归咎于用户的最后一英里提供商。然而,正如我们在本文中所讨论的,需要一种更细致的方法来确定导致性能差的瓶颈的位置。具体来说,我们关注的问题是瓶颈是否存在于蜂窝最后一跳(3G或LTE链路)或广域网路径的其他地方。我们提出了QProbe,一个利用蜂窝网络中使用的比例公平(PF)调度程序来确定蜂窝链路上是否发生排队的工具。在通过模拟和对照实验验证了QProbe之后,我们展示了一项为期2个月的测量研究的结果,该研究涉及33个国家51个运营商网络中的600多名真实用户。例如,我们发现,蜂窝最后一跳链路分别在3G和LTE客户端的总瓶颈情况中占68.9%和25.7%,这表明在很大一部分情况下,用户体验到的性能差是由于WAN,并且可能被路由。此外,在我们的测量研究中,我们表明QProbe检测3G和LTE客户端的瓶颈链路位置的准确率都超过85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QProbe: locating the bottleneck in cellular communication
Mobile communication is often frustratingly slow. When a user encounters poor performance, and perhaps even "confirms" the same by running a speed test, the tendency is to ascribe blame to the user's last-mile provider. However, as we argue in this paper, a more nuanced approach is needed to identify the location of the bottleneck responsible for the poor performance. Specifically, we focus on the question of whether the bottleneck lies in the cellular last hop (3G or LTE link) or elsewhere in the WAN path. We present QProbe, a tool that takes advantage of the proportional fair (PF) scheduler employed in cellular networks to determine whether queuing is happening at the cellular link. After validating QProbe through simulations and controlled experiments, we present our findings from a measurement study conducted over a 2 month period involving over 600 real-world users across 51 operator networks in 33 countries. We find that, for example, the cellular last-hop link is the bottleneck in 68.9% and 25.7% of the total bottleneck cases for 3G and LTE clients, respectively, suggesting that there is a significant fraction of cases where the poor performance experienced by the user is due to the WAN and could potentially be routed around. Moreover, we show that QProbe detects the bottleneck link location with greater than 85% accuracy for both 3G and LTE clients in our measurement study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boon and bane of 60 GHz networks: practical insights into beamforming, interference, and frame level operation UMON: flexible and fine grained traffic monitoring in open vSwitch Monocle A server-to-server view of the internet Demystifying and mitigating TCP stalls at the server side
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1