非对称分析的非数值预测模型

Michael L. Valenzuela, Chuan Feng, P. Reddy, F. Momen, J. Rozenblit, B. T. Eyck, F. Szidarovszky
{"title":"非对称分析的非数值预测模型","authors":"Michael L. Valenzuela, Chuan Feng, P. Reddy, F. Momen, J. Rozenblit, B. T. Eyck, F. Szidarovszky","doi":"10.1109/ECBS.2010.44","DOIUrl":null,"url":null,"abstract":"Predicting asymmetric threats (e.g., terrorist events) is becoming ever more important. Prior works have focused on tactical, statistical, and data-fusion systems. The thrust of our work has been the development of a non-numerical predictive model for amplifying intelligence analysts’ recognition of emergent threats. The intelligence community uses a Template schema for assessing courses of action. Our predictive model processes non-numerical data to arrive at automated assessment and confidence scores for these Templates. The predictive model is traceable, transparent, and utilizes Human-in-the-Loop data-fusion. For future work, this predictive model will be further enhanced with behavioral filtering. Behavioral filtering adjusts the assessment and confidence of the predictions by intelligently evaluating characteristic behavioral data. This non-numerical predictive model has been tested and verified in the Asymmetric Threat Response and Analysis Program (ATRAP).","PeriodicalId":356361,"journal":{"name":"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems","volume":"2007 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Non-numerical Predictive Model for Asymmetric Analysis\",\"authors\":\"Michael L. Valenzuela, Chuan Feng, P. Reddy, F. Momen, J. Rozenblit, B. T. Eyck, F. Szidarovszky\",\"doi\":\"10.1109/ECBS.2010.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting asymmetric threats (e.g., terrorist events) is becoming ever more important. Prior works have focused on tactical, statistical, and data-fusion systems. The thrust of our work has been the development of a non-numerical predictive model for amplifying intelligence analysts’ recognition of emergent threats. The intelligence community uses a Template schema for assessing courses of action. Our predictive model processes non-numerical data to arrive at automated assessment and confidence scores for these Templates. The predictive model is traceable, transparent, and utilizes Human-in-the-Loop data-fusion. For future work, this predictive model will be further enhanced with behavioral filtering. Behavioral filtering adjusts the assessment and confidence of the predictions by intelligently evaluating characteristic behavioral data. This non-numerical predictive model has been tested and verified in the Asymmetric Threat Response and Analysis Program (ATRAP).\",\"PeriodicalId\":356361,\"journal\":{\"name\":\"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems\",\"volume\":\"2007 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECBS.2010.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECBS.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

预测不对称威胁(如恐怖主义事件)正变得越来越重要。先前的工作集中在战术、统计和数据融合系统上。我们工作的重点是发展一种非数值预测模型,以扩大情报分析人员对紧急威胁的认识。情报界使用模板模式来评估行动方案。我们的预测模型处理非数值数据,以达到这些模板的自动评估和置信度得分。该预测模型具有可追溯性、透明性,并利用了“人在循环”数据融合。在未来的工作中,该预测模型将进一步通过行为过滤进行增强。行为过滤通过智能地评估特征行为数据来调整预测的评估和置信度。该非数值预测模型已在非对称威胁响应和分析计划(ATRAP)中进行了测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Non-numerical Predictive Model for Asymmetric Analysis
Predicting asymmetric threats (e.g., terrorist events) is becoming ever more important. Prior works have focused on tactical, statistical, and data-fusion systems. The thrust of our work has been the development of a non-numerical predictive model for amplifying intelligence analysts’ recognition of emergent threats. The intelligence community uses a Template schema for assessing courses of action. Our predictive model processes non-numerical data to arrive at automated assessment and confidence scores for these Templates. The predictive model is traceable, transparent, and utilizes Human-in-the-Loop data-fusion. For future work, this predictive model will be further enhanced with behavioral filtering. Behavioral filtering adjusts the assessment and confidence of the predictions by intelligently evaluating characteristic behavioral data. This non-numerical predictive model has been tested and verified in the Asymmetric Threat Response and Analysis Program (ATRAP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Based Statistical Testing and Durations Visual Tracking Based on 3D Probabilistic Reconstruction Component-Based Architecture for e-Gov Web Systems Development Towards an Architectural Framework for Agile Software Development Fault Management Driven Design with Safety and Security Requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1