高性能机器人

E. Faulring, J. Colgate, M. Peshkin
{"title":"高性能机器人","authors":"E. Faulring, J. Colgate, M. Peshkin","doi":"10.1109/ICORR.2005.1501071","DOIUrl":null,"url":null,"abstract":"Cobots are a class of robots that use continuously variable transmissions to develop high fidelity programmable constraint surfaces. Cobots consume very little electrical power even when providing high output forces, and their transmissions are highly efficient across a broad range of transmission ratios. Cobotic transmissions also have the ability to act either as a brake or to become entirely free. The design and performance of the cobotic hand controller, a recently developed six-degree-of-freedom haptic display, is reviewed. This device illustrates the high dynamic range and low power consumption achievable by cobots. A thorough comparison of the power efficiency of a cobotic system versus a conventional electro-mechanical system is provided.","PeriodicalId":131431,"journal":{"name":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High performance Cobotics\",\"authors\":\"E. Faulring, J. Colgate, M. Peshkin\",\"doi\":\"10.1109/ICORR.2005.1501071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cobots are a class of robots that use continuously variable transmissions to develop high fidelity programmable constraint surfaces. Cobots consume very little electrical power even when providing high output forces, and their transmissions are highly efficient across a broad range of transmission ratios. Cobotic transmissions also have the ability to act either as a brake or to become entirely free. The design and performance of the cobotic hand controller, a recently developed six-degree-of-freedom haptic display, is reviewed. This device illustrates the high dynamic range and low power consumption achievable by cobots. A thorough comparison of the power efficiency of a cobotic system versus a conventional electro-mechanical system is provided.\",\"PeriodicalId\":131431,\"journal\":{\"name\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2005.1501071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2005.1501071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

协作机器人是一类使用无级变速传动来开发高保真可编程约束曲面的机器人。协作机器人即使在提供高输出力的情况下也只消耗很少的电力,而且它们的变速器在很大的传动比范围内都是高效率的。机器人传动装置也可以起到刹车或完全自由的作用。综述了近年来开发的六自由度触觉显示器cobotic手控器的设计和性能。该装置展示了协作机器人可以实现的高动态范围和低功耗。提供了机器人系统与传统机电系统的功率效率的全面比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High performance Cobotics
Cobots are a class of robots that use continuously variable transmissions to develop high fidelity programmable constraint surfaces. Cobots consume very little electrical power even when providing high output forces, and their transmissions are highly efficient across a broad range of transmission ratios. Cobotic transmissions also have the ability to act either as a brake or to become entirely free. The design and performance of the cobotic hand controller, a recently developed six-degree-of-freedom haptic display, is reviewed. This device illustrates the high dynamic range and low power consumption achievable by cobots. A thorough comparison of the power efficiency of a cobotic system versus a conventional electro-mechanical system is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual input device for self-assisted control of a virtual pendulum Realizing a posture-based wearable antigravity muscles support system for lower extremities Adjustable robotic tendon using a 'Jack Spring'/spl trade/ A 3-D rehabilitation system for upper limbs developed in a 5-year NEDO project and its clinical testing A motorized gravity compensation mechanism used for active rehabilitation of upper limbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1