一种用于过采样adc的高增益、低功耗锁存比较器设计

Varun Mishra, S. Gupta, Y. Verma, V. Ramola, Abhishek Bora
{"title":"一种用于过采样adc的高增益、低功耗锁存比较器设计","authors":"Varun Mishra, S. Gupta, Y. Verma, V. Ramola, Abhishek Bora","doi":"10.1109/SPIN.2018.8474156","DOIUrl":null,"url":null,"abstract":"In this paper, the challenge of enhancing the gain and reducing the power requirements of latch comparators, preferably used in oversampled ADC is addressed. It is demonstrated that by designing the pre-amplifier stage using composite cascode differential structure, in which some transistors operate in subthreshold/ weak inversion region, high-gain (79 dB) at low-power (412nW) and low input noise (111.4nV/sqrt(Hz)) with 1.5V power supply, can be obtained through this stage. The succeeding latch circuitry is designed to enhance the comparator speed and to kickback noise effect. The proposed latch comparator operates at a low power consumption of 32μW and has a propagation delay of 0.78 ns only. The op-amp is designed using 180nm CMOS technology and simulations that demonstrate results are given.","PeriodicalId":184596,"journal":{"name":"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A High-Gain, Low-Power Latch Comparator Design for Oversampled ADCs\",\"authors\":\"Varun Mishra, S. Gupta, Y. Verma, V. Ramola, Abhishek Bora\",\"doi\":\"10.1109/SPIN.2018.8474156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the challenge of enhancing the gain and reducing the power requirements of latch comparators, preferably used in oversampled ADC is addressed. It is demonstrated that by designing the pre-amplifier stage using composite cascode differential structure, in which some transistors operate in subthreshold/ weak inversion region, high-gain (79 dB) at low-power (412nW) and low input noise (111.4nV/sqrt(Hz)) with 1.5V power supply, can be obtained through this stage. The succeeding latch circuitry is designed to enhance the comparator speed and to kickback noise effect. The proposed latch comparator operates at a low power consumption of 32μW and has a propagation delay of 0.78 ns only. The op-amp is designed using 180nm CMOS technology and simulations that demonstrate results are given.\",\"PeriodicalId\":184596,\"journal\":{\"name\":\"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN.2018.8474156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN.2018.8474156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文解决了锁存比较器在过采样ADC中提高增益和降低功率要求的问题。结果表明,采用复合级联差分结构设计前置放大器级,其中部分晶体管工作在亚阈值/弱反转区,在1.5V电源下,可获得低功率(412nW)下的高增益(79 dB)和低输入噪声(111.4nV/sqrt(Hz))。随后的锁存电路被设计用来提高比较器的速度和抵消噪声效应。所提出的锁存器比较器工作功耗低至32μW,传输延迟仅为0.78 ns。该运放采用180nm CMOS技术设计,并给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A High-Gain, Low-Power Latch Comparator Design for Oversampled ADCs
In this paper, the challenge of enhancing the gain and reducing the power requirements of latch comparators, preferably used in oversampled ADC is addressed. It is demonstrated that by designing the pre-amplifier stage using composite cascode differential structure, in which some transistors operate in subthreshold/ weak inversion region, high-gain (79 dB) at low-power (412nW) and low input noise (111.4nV/sqrt(Hz)) with 1.5V power supply, can be obtained through this stage. The succeeding latch circuitry is designed to enhance the comparator speed and to kickback noise effect. The proposed latch comparator operates at a low power consumption of 32μW and has a propagation delay of 0.78 ns only. The op-amp is designed using 180nm CMOS technology and simulations that demonstrate results are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CPW-Fed UWB Flexible Antenna for GSM/WLAN/X-Band Applications Deep Convolution Neural Network Based Speech Recognition for Chhattisgarhi PLCC System Performance with Complex Channel-Gain and QPSK Signaling A Novel HEED Protocol for Wireless Sensor Networks Computer Based Automatic Segmentation of Pap smear Cells for Cervical Cancer Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1