连续时间半马尔可夫链的半鞅动力学及其生成

R. Elliott
{"title":"连续时间半马尔可夫链的半鞅动力学及其生成","authors":"R. Elliott","doi":"10.31390/josa.1.1.01","DOIUrl":null,"url":null,"abstract":"We consider a finite state, continuous time homogeneous semiMarkov chain X = {Xt, t ≥ 0}. Without loss of generality the state space of the chain can be identified with the set of unit vectors S = {e1, e2, . . . , eN} where ei = (0, . . . , 0, 1, 0, . . . , 0) ′ ∈ RN . The probabilistic and dynamic properties of X can be described by either a rate matrix A or a matrix which gives the occupation times in the various states together with the probabilities of jumping to a different state. For a continuous time Markov chain the occupation times are memoryless, implying the distributions are exponential. For semi-Markov chains the occupation times can have more general distributions. The relation between these two descriptions is first investigated and the semimartingale dynamics of a semi-Markov chain obtained in contrast to the traditional description of a semi-Markov chain in terms of a renewal process. An equation giving the dynamics of the occupation times is derived together with an equation for the density of the conditional occupation time and state. Some approximations for these dynamics are then obtained.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Semimartingale Dynamics and Generator of a Continuous Time Semi-Markov Chain\",\"authors\":\"R. Elliott\",\"doi\":\"10.31390/josa.1.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a finite state, continuous time homogeneous semiMarkov chain X = {Xt, t ≥ 0}. Without loss of generality the state space of the chain can be identified with the set of unit vectors S = {e1, e2, . . . , eN} where ei = (0, . . . , 0, 1, 0, . . . , 0) ′ ∈ RN . The probabilistic and dynamic properties of X can be described by either a rate matrix A or a matrix which gives the occupation times in the various states together with the probabilities of jumping to a different state. For a continuous time Markov chain the occupation times are memoryless, implying the distributions are exponential. For semi-Markov chains the occupation times can have more general distributions. The relation between these two descriptions is first investigated and the semimartingale dynamics of a semi-Markov chain obtained in contrast to the traditional description of a semi-Markov chain in terms of a renewal process. An equation giving the dynamics of the occupation times is derived together with an equation for the density of the conditional occupation time and state. Some approximations for these dynamics are then obtained.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.1.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.1.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑一个有限状态,连续时间齐次半马尔科夫链X = {Xt, t≥0}。在不失一般性的前提下,链的状态空间可以用单位向量S = {e1, e2,…, n}其中ei =(0,…), 0,1,0,…, 0) '∈rn。X的概率和动态特性可以用一个速率矩阵a来描述,也可以用一个矩阵来描述它在不同状态下的占用时间以及跳跃到不同状态的概率。对于连续时间马尔可夫链,占用时间是无记忆的,这意味着分布是指数的。对于半马尔可夫链,占用时间可以有更一般的分布。首先研究了这两种描述之间的关系,得到了半马尔可夫链的半鞅动力学,与传统的半马尔可夫链的更新过程描述形成了对比。导出了占用时间的动力学方程以及有条件占用时间和状态的密度方程。然后得到了这些动力学的一些近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Semimartingale Dynamics and Generator of a Continuous Time Semi-Markov Chain
We consider a finite state, continuous time homogeneous semiMarkov chain X = {Xt, t ≥ 0}. Without loss of generality the state space of the chain can be identified with the set of unit vectors S = {e1, e2, . . . , eN} where ei = (0, . . . , 0, 1, 0, . . . , 0) ′ ∈ RN . The probabilistic and dynamic properties of X can be described by either a rate matrix A or a matrix which gives the occupation times in the various states together with the probabilities of jumping to a different state. For a continuous time Markov chain the occupation times are memoryless, implying the distributions are exponential. For semi-Markov chains the occupation times can have more general distributions. The relation between these two descriptions is first investigated and the semimartingale dynamics of a semi-Markov chain obtained in contrast to the traditional description of a semi-Markov chain in terms of a renewal process. An equation giving the dynamics of the occupation times is derived together with an equation for the density of the conditional occupation time and state. Some approximations for these dynamics are then obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiplication Operators by White Noise Delta Functions and Associated Differential Equations Random Variables with Overlapping Number and Weyl Algebras II Symmetric Functions Algebras (SFA) II: Induced Matrices Quantization of the Monotone Poisson Central Limit Theorem Applications of a Superposed Ornstein-Uhlenbeck Type Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1