基于检索的对话系统多回合响应选择的多层次时空匹配网络

Mei Ma, Jianji Wang, Xuguang Lan, N. Zheng
{"title":"基于检索的对话系统多回合响应选择的多层次时空匹配网络","authors":"Mei Ma, Jianji Wang, Xuguang Lan, N. Zheng","doi":"10.1109/ICKG52313.2021.00047","DOIUrl":null,"url":null,"abstract":"The important task of multi-turn response selection in conversation systems must consider sufficient semantic information and spatio-temporal information when building retrieval-based chatbots. However, existing studies do not pay enough attention to both factors. In this study, a scheme of multi-turn response selection that combines a primary temporal matching module, an advanced temporal matching module, and a spatial matching module is proposed to extract matching information from context and response. The temporal matching modules progressively construct representations of the context and candidate responses at different granularities. Similarity matrices of the context and candidate responses are calculated and stacked using the spatial matching module. Convolutional neural network is then utilized to extract the spatial matching information. Finally, matching vectors of the three modules are fused to calculate the final matching score. Experimental results on two public datasets verify that our model can outperform state-of-the-art methods.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-level Spatio-temporal Matching Network for Multi-turn Response Selection in Retrieval-based Dialogue Systems\",\"authors\":\"Mei Ma, Jianji Wang, Xuguang Lan, N. Zheng\",\"doi\":\"10.1109/ICKG52313.2021.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The important task of multi-turn response selection in conversation systems must consider sufficient semantic information and spatio-temporal information when building retrieval-based chatbots. However, existing studies do not pay enough attention to both factors. In this study, a scheme of multi-turn response selection that combines a primary temporal matching module, an advanced temporal matching module, and a spatial matching module is proposed to extract matching information from context and response. The temporal matching modules progressively construct representations of the context and candidate responses at different granularities. Similarity matrices of the context and candidate responses are calculated and stacked using the spatial matching module. Convolutional neural network is then utilized to extract the spatial matching information. Finally, matching vectors of the three modules are fused to calculate the final matching score. Experimental results on two public datasets verify that our model can outperform state-of-the-art methods.\",\"PeriodicalId\":174126,\"journal\":{\"name\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKG52313.2021.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在构建基于检索的聊天机器人时,会话系统中多回合响应选择的重要任务必须考虑足够的语义信息和时空信息。然而,现有的研究对这两个因素的重视程度不够。本研究提出了一种结合初级时间匹配模块、高级时间匹配模块和空间匹配模块的多回合响应选择方案,从上下文和响应中提取匹配信息。时间匹配模块逐步构建不同粒度的上下文和候选响应的表示。使用空间匹配模块计算上下文和候选响应的相似矩阵并进行堆叠。然后利用卷积神经网络提取空间匹配信息。最后,对三个模块的匹配向量进行融合,计算出最终的匹配分数。在两个公共数据集上的实验结果验证了我们的模型可以优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-level Spatio-temporal Matching Network for Multi-turn Response Selection in Retrieval-based Dialogue Systems
The important task of multi-turn response selection in conversation systems must consider sufficient semantic information and spatio-temporal information when building retrieval-based chatbots. However, existing studies do not pay enough attention to both factors. In this study, a scheme of multi-turn response selection that combines a primary temporal matching module, an advanced temporal matching module, and a spatial matching module is proposed to extract matching information from context and response. The temporal matching modules progressively construct representations of the context and candidate responses at different granularities. Similarity matrices of the context and candidate responses are calculated and stacked using the spatial matching module. Convolutional neural network is then utilized to extract the spatial matching information. Finally, matching vectors of the three modules are fused to calculate the final matching score. Experimental results on two public datasets verify that our model can outperform state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Genetic Algorithm for Residual Static Correction A Robust Mathematical Model for Blood Supply Chain Network using Game Theory Divide and Conquer: Targeted Adversary Detection using Proximity and Dependency A divide-and-conquer method for computing preferred extensions of argumentation frameworks An efficient framework for sentence similarity inspired by quantum computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1