P. Guzdar, J. Drake, D. McCarthy, A. Hassam, C. Liu
{"title":"托卡马克边缘等离子体非线性漂阻气胀模式的三维流体模拟","authors":"P. Guzdar, J. Drake, D. McCarthy, A. Hassam, C. Liu","doi":"10.1063/1.860842","DOIUrl":null,"url":null,"abstract":"A three‐dimensional study of the turbulence and sheared flow generated by the drift‐resistive ballooning modes in tokamak edge plasmas has been completed. The fluid simulations show that 10%–15% percent density fluctuations can develop in the nonlinear state when the self‐consistently generated shear flow is suppressed. These modes are also found to give rise to poloidally asymmetric particle transport. Characteristic scale lengths of these fluctuations are isotropic in the plane transverse to B and smaller than the connection length along the field line. Sheared poloidal flow is self‐consistently driven by both the Reynolds stress and the Stringer mechanisms. In the presence of self‐consistent shear flow, the transverse spectrum is no longer isotropic transverse to B. The vortices become elongated in the poloidal direction. Also, there is a substantial reduction in both the level of fluctuations of the density and potential and the associated particle transport. These features are in qualitative agreemen...","PeriodicalId":113346,"journal":{"name":"Physics of fluids. B, Plasma physics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"224","resultStr":"{\"title\":\"Three‐dimensional fluid simulations of the nonlinear drift‐resistive ballooning modes in tokamak edge plasmas\",\"authors\":\"P. Guzdar, J. Drake, D. McCarthy, A. Hassam, C. Liu\",\"doi\":\"10.1063/1.860842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three‐dimensional study of the turbulence and sheared flow generated by the drift‐resistive ballooning modes in tokamak edge plasmas has been completed. The fluid simulations show that 10%–15% percent density fluctuations can develop in the nonlinear state when the self‐consistently generated shear flow is suppressed. These modes are also found to give rise to poloidally asymmetric particle transport. Characteristic scale lengths of these fluctuations are isotropic in the plane transverse to B and smaller than the connection length along the field line. Sheared poloidal flow is self‐consistently driven by both the Reynolds stress and the Stringer mechanisms. In the presence of self‐consistent shear flow, the transverse spectrum is no longer isotropic transverse to B. The vortices become elongated in the poloidal direction. Also, there is a substantial reduction in both the level of fluctuations of the density and potential and the associated particle transport. These features are in qualitative agreemen...\",\"PeriodicalId\":113346,\"journal\":{\"name\":\"Physics of fluids. B, Plasma physics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"224\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of fluids. B, Plasma physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.860842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of fluids. B, Plasma physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.860842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three‐dimensional fluid simulations of the nonlinear drift‐resistive ballooning modes in tokamak edge plasmas
A three‐dimensional study of the turbulence and sheared flow generated by the drift‐resistive ballooning modes in tokamak edge plasmas has been completed. The fluid simulations show that 10%–15% percent density fluctuations can develop in the nonlinear state when the self‐consistently generated shear flow is suppressed. These modes are also found to give rise to poloidally asymmetric particle transport. Characteristic scale lengths of these fluctuations are isotropic in the plane transverse to B and smaller than the connection length along the field line. Sheared poloidal flow is self‐consistently driven by both the Reynolds stress and the Stringer mechanisms. In the presence of self‐consistent shear flow, the transverse spectrum is no longer isotropic transverse to B. The vortices become elongated in the poloidal direction. Also, there is a substantial reduction in both the level of fluctuations of the density and potential and the associated particle transport. These features are in qualitative agreemen...