基于列表的新闻文章分类匹配算法

T. Jo, Gwyduk Yeom
{"title":"基于列表的新闻文章分类匹配算法","authors":"T. Jo, Gwyduk Yeom","doi":"10.1109/SYSOSE.2008.4724142","DOIUrl":null,"url":null,"abstract":"This research proposes an alternative approach to machine learning based ones for categorizing news articles given as in plain texts. In order to use one of machine learning based approaches for the task, documents should be encoded into numerical vectors; it causes two problems: huge dimensionality and sparse distribution. The proposed approach is intended to address the two problems. In other words, the two problems are avoided by encoding a document or documents into a table, instead of numerical vectors. Therefore, the goal of the research is to improve the performance of text categorization by solving the two problems.","PeriodicalId":425055,"journal":{"name":"2008 IEEE International Workshop on Semantic Computing and Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"List Based Matching Algorithm for Classifying News Articles in NewsPage.com\",\"authors\":\"T. Jo, Gwyduk Yeom\",\"doi\":\"10.1109/SYSOSE.2008.4724142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes an alternative approach to machine learning based ones for categorizing news articles given as in plain texts. In order to use one of machine learning based approaches for the task, documents should be encoded into numerical vectors; it causes two problems: huge dimensionality and sparse distribution. The proposed approach is intended to address the two problems. In other words, the two problems are avoided by encoding a document or documents into a table, instead of numerical vectors. Therefore, the goal of the research is to improve the performance of text categorization by solving the two problems.\",\"PeriodicalId\":425055,\"journal\":{\"name\":\"2008 IEEE International Workshop on Semantic Computing and Applications\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Workshop on Semantic Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYSOSE.2008.4724142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Workshop on Semantic Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2008.4724142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究提出了一种基于机器学习的替代方法,用于对纯文本中的新闻文章进行分类。为了使用一种基于机器学习的方法来完成任务,文档应该被编码成数值向量;它带来了两个问题:巨大的维数和稀疏的分布。拟议的办法旨在解决这两个问题。换句话说,通过将一个或多个文档编码到表中,而不是将数字向量编码到表中,可以避免这两个问题。因此,研究的目标是通过解决这两个问题来提高文本分类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
List Based Matching Algorithm for Classifying News Articles in NewsPage.com
This research proposes an alternative approach to machine learning based ones for categorizing news articles given as in plain texts. In order to use one of machine learning based approaches for the task, documents should be encoded into numerical vectors; it causes two problems: huge dimensionality and sparse distribution. The proposed approach is intended to address the two problems. In other words, the two problems are avoided by encoding a document or documents into a table, instead of numerical vectors. Therefore, the goal of the research is to improve the performance of text categorization by solving the two problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Personalized Summarization Using Non-negative Matrix Factorization and Relevance Measure Semantic Web Service for Freight Management System Enhanced Search Method for Ontology Classification OntoSonomy: Ontology-Based Extension of Folksonomy Performance Evaluation of SVM in Image Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1