{"title":"增强模态匹配方法有效预测宏观和微穿孔隔板的声学性能","authors":"C. Maury, T. Bravo","doi":"10.1121/2.0001429","DOIUrl":null,"url":null,"abstract":"Rigidly-backed micro-perforated panels (MPPs) are Helmholtz-type absorbers whose performance is usually limited to narrow frequency ranges. Multi-layer or multi-array partitions enable to extend their absorption properties over a broader bandwidth. Optimal selection of their parameters often leads to a distribution of macro and micro-perforated panels constitutive of the overall partition. However, there is not yet a full consensus on a unified impedance model whose end-correction terms may contribute to the dissipation of both macro- and micro-perforated panels. In this study, an enhanced multi-modal approach is formulated that is able to describe the dissipative and reactive properties of multi-layer backed or unbacked macro-or micro-perforated partitions. It provides a unit cell transfer impedance that accounts for visco-thermal boundary layers (VTBLs) and high-order evanescent modes within the perforation and at the panel walls. It is validated against Finite Element Visco-Thermal Acoustics models, but at a much lower computational cost. It is shown that the presence of VTBLs over the solid surfaces cannot be neglected for perforates with a thickness-to-hole diameter ratio lower than 0.5 or for multi-layer acoustic fishnets with thin air gaps lower than six times the VTBLs thickness.","PeriodicalId":300779,"journal":{"name":"180th Meeting of the Acoustical Society of America","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced modal matching approach to efficiently predict the acoustical performance of macro- and micro-perforated partitions\",\"authors\":\"C. Maury, T. Bravo\",\"doi\":\"10.1121/2.0001429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rigidly-backed micro-perforated panels (MPPs) are Helmholtz-type absorbers whose performance is usually limited to narrow frequency ranges. Multi-layer or multi-array partitions enable to extend their absorption properties over a broader bandwidth. Optimal selection of their parameters often leads to a distribution of macro and micro-perforated panels constitutive of the overall partition. However, there is not yet a full consensus on a unified impedance model whose end-correction terms may contribute to the dissipation of both macro- and micro-perforated panels. In this study, an enhanced multi-modal approach is formulated that is able to describe the dissipative and reactive properties of multi-layer backed or unbacked macro-or micro-perforated partitions. It provides a unit cell transfer impedance that accounts for visco-thermal boundary layers (VTBLs) and high-order evanescent modes within the perforation and at the panel walls. It is validated against Finite Element Visco-Thermal Acoustics models, but at a much lower computational cost. It is shown that the presence of VTBLs over the solid surfaces cannot be neglected for perforates with a thickness-to-hole diameter ratio lower than 0.5 or for multi-layer acoustic fishnets with thin air gaps lower than six times the VTBLs thickness.\",\"PeriodicalId\":300779,\"journal\":{\"name\":\"180th Meeting of the Acoustical Society of America\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"180th Meeting of the Acoustical Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0001429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"180th Meeting of the Acoustical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0001429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced modal matching approach to efficiently predict the acoustical performance of macro- and micro-perforated partitions
Rigidly-backed micro-perforated panels (MPPs) are Helmholtz-type absorbers whose performance is usually limited to narrow frequency ranges. Multi-layer or multi-array partitions enable to extend their absorption properties over a broader bandwidth. Optimal selection of their parameters often leads to a distribution of macro and micro-perforated panels constitutive of the overall partition. However, there is not yet a full consensus on a unified impedance model whose end-correction terms may contribute to the dissipation of both macro- and micro-perforated panels. In this study, an enhanced multi-modal approach is formulated that is able to describe the dissipative and reactive properties of multi-layer backed or unbacked macro-or micro-perforated partitions. It provides a unit cell transfer impedance that accounts for visco-thermal boundary layers (VTBLs) and high-order evanescent modes within the perforation and at the panel walls. It is validated against Finite Element Visco-Thermal Acoustics models, but at a much lower computational cost. It is shown that the presence of VTBLs over the solid surfaces cannot be neglected for perforates with a thickness-to-hole diameter ratio lower than 0.5 or for multi-layer acoustic fishnets with thin air gaps lower than six times the VTBLs thickness.