低惯性下提高GB输电网的短路电平和动态无功交换

D. Tzelepis, Q. Hong, C. Booth, P. Papadopoulos, J. Ramachandran, Guangya Yang
{"title":"低惯性下提高GB输电网的短路电平和动态无功交换","authors":"D. Tzelepis, Q. Hong, C. Booth, P. Papadopoulos, J. Ramachandran, Guangya Yang","doi":"10.1109/SEST.2019.8849020","DOIUrl":null,"url":null,"abstract":"The objective of the studies presented in this paper is to demonstrate that the deployment and operational control of Synchronous Condensers (SynCons) combined with Static Compensators (STATCOM) in the GB transmission system can mitigate a part of the challenges associated with the high penetration of renewable energy sources. The case studies include scenarios such as transmission-level faults, fault level calculation and dynamic reactive power provision. For these scenarios, SynCons and STATCOMs of different capacity and design are installed at different regions of the GB transmission system. For these studies, verified models of SynCons and STATCOMs are deployed which are integrated to a representative GB network model. All the studies have been implemented in RMS simulation environment using Power Factory ‐ DIgSILENT package software.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing Short-Circuit Level and Dynamic Reactive Power Exchange in GB Transmission Networks under Low Inertia Scenarios\",\"authors\":\"D. Tzelepis, Q. Hong, C. Booth, P. Papadopoulos, J. Ramachandran, Guangya Yang\",\"doi\":\"10.1109/SEST.2019.8849020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the studies presented in this paper is to demonstrate that the deployment and operational control of Synchronous Condensers (SynCons) combined with Static Compensators (STATCOM) in the GB transmission system can mitigate a part of the challenges associated with the high penetration of renewable energy sources. The case studies include scenarios such as transmission-level faults, fault level calculation and dynamic reactive power provision. For these scenarios, SynCons and STATCOMs of different capacity and design are installed at different regions of the GB transmission system. For these studies, verified models of SynCons and STATCOMs are deployed which are integrated to a representative GB network model. All the studies have been implemented in RMS simulation environment using Power Factory ‐ DIgSILENT package software.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出的研究目的是证明同步冷凝器(SynCons)与静态补偿器(STATCOM)在GB传输系统中的部署和运行控制可以减轻与可再生能源的高渗透相关的部分挑战。案例研究包括输电级故障、故障级计算和动态无功供电等场景。针对这些场景,在GB传输系统的不同区域安装不同容量和设计的syncon和statcom。在这些研究中,部署了经过验证的SynCons和STATCOMs模型,并将其集成到具有代表性的GB网络模型中。所有的研究都在RMS仿真环境下使用Power Factory - DIgSILENT软件包软件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Short-Circuit Level and Dynamic Reactive Power Exchange in GB Transmission Networks under Low Inertia Scenarios
The objective of the studies presented in this paper is to demonstrate that the deployment and operational control of Synchronous Condensers (SynCons) combined with Static Compensators (STATCOM) in the GB transmission system can mitigate a part of the challenges associated with the high penetration of renewable energy sources. The case studies include scenarios such as transmission-level faults, fault level calculation and dynamic reactive power provision. For these scenarios, SynCons and STATCOMs of different capacity and design are installed at different regions of the GB transmission system. For these studies, verified models of SynCons and STATCOMs are deployed which are integrated to a representative GB network model. All the studies have been implemented in RMS simulation environment using Power Factory ‐ DIgSILENT package software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement Data Acquisition System in Laboratory for Renewable Energy Sources Enhancing Short-Circuit Level and Dynamic Reactive Power Exchange in GB Transmission Networks under Low Inertia Scenarios What time-period aggregation method works best for power system operation models with renewables and storage? Primary and Secondary Control in Lossy Inverter-Based Microgrids Analysis of Battery Energy Storage System Integration in a Combined Cycle Power Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1