用于生成隐写术的综合征-栅格采样器

Tamio-Vesa Nakajima, Andrew D. Ker
{"title":"用于生成隐写术的综合征-栅格采样器","authors":"Tamio-Vesa Nakajima, Andrew D. Ker","doi":"10.1109/WIFS49906.2020.9360885","DOIUrl":null,"url":null,"abstract":"We adapt the Syndrome-Trellis Code algorithm to generative steganography, giving a method for sampling from a specified distribution subject to linear constraints. This allows the use of syndrome codes, popular in cover-modification methods, for cover-generation steganography. The SyndromeTrellis Sampler works directly on independent and Markov-chain distributions, and can be plugged into an existing STC-based method to extend it to Gibbs fields that can be decomposed into conditionally-independent sublattices. We give some experiments to show that the method is correct, and to quantify how the payload condition forces the sampled distribution away from the target. The results show that the secrecy of the parity-check matrix of the syndrome code is important. We also show how to exploit sparsity in the conditional cover distribution, in a simple example from linguistic steganography.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Syndrome-Trellis Sampler for Generative Steganography\",\"authors\":\"Tamio-Vesa Nakajima, Andrew D. Ker\",\"doi\":\"10.1109/WIFS49906.2020.9360885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We adapt the Syndrome-Trellis Code algorithm to generative steganography, giving a method for sampling from a specified distribution subject to linear constraints. This allows the use of syndrome codes, popular in cover-modification methods, for cover-generation steganography. The SyndromeTrellis Sampler works directly on independent and Markov-chain distributions, and can be plugged into an existing STC-based method to extend it to Gibbs fields that can be decomposed into conditionally-independent sublattices. We give some experiments to show that the method is correct, and to quantify how the payload condition forces the sampled distribution away from the target. The results show that the secrecy of the parity-check matrix of the syndrome code is important. We also show how to exploit sparsity in the conditional cover distribution, in a simple example from linguistic steganography.\",\"PeriodicalId\":354881,\"journal\":{\"name\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS49906.2020.9360885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们将综合征-栅格码算法应用于生成隐写,给出了一种在线性约束下从指定分布中采样的方法。这允许使用在封面修改方法中流行的综合征代码进行封面生成隐写。syndrome metrellis Sampler直接作用于独立和马尔可夫链分布,并且可以插入到现有的基于stc的方法中,将其扩展到可以分解为条件独立子格的Gibbs域。我们给出了一些实验来证明该方法是正确的,并量化了载荷条件如何迫使采样分布远离目标。结果表明,证码奇偶校验矩阵的保密性是很重要的。我们还展示了如何在条件覆盖分布中利用稀疏性,这是一个来自语言隐写的简单示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Syndrome-Trellis Sampler for Generative Steganography
We adapt the Syndrome-Trellis Code algorithm to generative steganography, giving a method for sampling from a specified distribution subject to linear constraints. This allows the use of syndrome codes, popular in cover-modification methods, for cover-generation steganography. The SyndromeTrellis Sampler works directly on independent and Markov-chain distributions, and can be plugged into an existing STC-based method to extend it to Gibbs fields that can be decomposed into conditionally-independent sublattices. We give some experiments to show that the method is correct, and to quantify how the payload condition forces the sampled distribution away from the target. The results show that the secrecy of the parity-check matrix of the syndrome code is important. We also show how to exploit sparsity in the conditional cover distribution, in a simple example from linguistic steganography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Post-Quantum Secure Two-Party Computation for Iris Biometric Template Protection AmpleDroid Recovering Large Object Files from Android Application Memory The Suitability of RSA for Bulk Data Encryption ALASKA#2: Challenging Academic Research on Steganalysis with Realistic Images Landmark Breaker: Obstructing DeepFake By Disturbing Landmark Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1