基于立体多区域方差的视疲劳测量模型

H. Cho, Ghulam Hussain, Jin-hoon Park, Jong-Hak Kim, Jun-Dong Cho
{"title":"基于立体多区域方差的视疲劳测量模型","authors":"H. Cho, Ghulam Hussain, Jin-hoon Park, Jong-Hak Kim, Jun-Dong Cho","doi":"10.1109/ICACT.2016.7423569","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a visual fatigue measurement model which based on multi-area variance. Existing visual fatigue measurement model focused at negative area which largely occurred visual fatigue. To make up for previous research, our method uses characteristic of depth-map image that can consider negative area and positive area. Then, we calculate variance ratio and average ratio that located at maximum variance area and minimum variance area in a depth-map image. We obtained correlation index of 87.3% from experimental results which is between Variance based on Visual Fatigue (VVF) model and Mean Opinion Score (MOS).","PeriodicalId":125854,"journal":{"name":"2016 18th International Conference on Advanced Communication Technology (ICACT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Visual fatigue measurement model based on multi-area variance in a stereoscopy\",\"authors\":\"H. Cho, Ghulam Hussain, Jin-hoon Park, Jong-Hak Kim, Jun-Dong Cho\",\"doi\":\"10.1109/ICACT.2016.7423569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a visual fatigue measurement model which based on multi-area variance. Existing visual fatigue measurement model focused at negative area which largely occurred visual fatigue. To make up for previous research, our method uses characteristic of depth-map image that can consider negative area and positive area. Then, we calculate variance ratio and average ratio that located at maximum variance area and minimum variance area in a depth-map image. We obtained correlation index of 87.3% from experimental results which is between Variance based on Visual Fatigue (VVF) model and Mean Opinion Score (MOS).\",\"PeriodicalId\":125854,\"journal\":{\"name\":\"2016 18th International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACT.2016.7423569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACT.2016.7423569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于多区域方差的视觉疲劳测量模型。现有的视疲劳测量模型主要集中在视觉疲劳发生的负区域。为了弥补以往研究的不足,我们的方法利用了深度图图像可以考虑负区域和正区域的特点。然后,计算深度图图像中最大方差区和最小方差区方差比和均值;实验结果表明,基于视觉疲劳(VVF)模型的方差与平均意见评分(MOS)之间的相关指数为87.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual fatigue measurement model based on multi-area variance in a stereoscopy
In this paper, we propose a visual fatigue measurement model which based on multi-area variance. Existing visual fatigue measurement model focused at negative area which largely occurred visual fatigue. To make up for previous research, our method uses characteristic of depth-map image that can consider negative area and positive area. Then, we calculate variance ratio and average ratio that located at maximum variance area and minimum variance area in a depth-map image. We obtained correlation index of 87.3% from experimental results which is between Variance based on Visual Fatigue (VVF) model and Mean Opinion Score (MOS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNSNA: DNS name autoconfiguration for Internet of Things devices A novel multi-carrier waveform with high spectral efficiency: Semi-orthogonal frequency division multiplexing Adaptive spectral co-clustering for multiview data Efficient Doppler mitigation for high-speed rail communications Supply and demand management system based on consumption pattern analysis and tariff for cost minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1