Lingxiao Zhao, Shuangzhi Li, Jiankang Zhang, X. Mu
{"title":"一种基于parafac的大规模MIMO系统盲信道估计和符号检测方案","authors":"Lingxiao Zhao, Shuangzhi Li, Jiankang Zhang, X. Mu","doi":"10.1109/CYBERC.2018.00069","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-user massive multiple-input and multiple-output (MIMO) uplink system is considered, in which multiple single antenna users communicate with a target BS equipped with a large antenna array. We assume both the BS and K users have no knowledge of channel statement information. For such a system, by utilizing the unique factorization of three-way tensors, we proposed a parafac-based blind channel estimation and symbol detection scheme for the massive MIMO system, the proposed system can ensure the unique identification of the channel matrix and symbol matrix in a noise-free case. In a noisy case, a novel fitting algorithm called constrained bilinear alternating least squares is proposed to efficiently estimate the channel matrix and symbols. Numerical simulation results illustrate that the proposed scheme has a superior bit error ratio and normalized mean square error performance than traditional least square method. In addition, it has a faster convergence speed than typical alternation least square fitting algorithm.","PeriodicalId":282903,"journal":{"name":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Parafac-Based Blind Channel Estimation and Symbol Detection Scheme for Massive MIMO Systems\",\"authors\":\"Lingxiao Zhao, Shuangzhi Li, Jiankang Zhang, X. Mu\",\"doi\":\"10.1109/CYBERC.2018.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-user massive multiple-input and multiple-output (MIMO) uplink system is considered, in which multiple single antenna users communicate with a target BS equipped with a large antenna array. We assume both the BS and K users have no knowledge of channel statement information. For such a system, by utilizing the unique factorization of three-way tensors, we proposed a parafac-based blind channel estimation and symbol detection scheme for the massive MIMO system, the proposed system can ensure the unique identification of the channel matrix and symbol matrix in a noise-free case. In a noisy case, a novel fitting algorithm called constrained bilinear alternating least squares is proposed to efficiently estimate the channel matrix and symbols. Numerical simulation results illustrate that the proposed scheme has a superior bit error ratio and normalized mean square error performance than traditional least square method. In addition, it has a faster convergence speed than typical alternation least square fitting algorithm.\",\"PeriodicalId\":282903,\"journal\":{\"name\":\"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2018.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2018.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Parafac-Based Blind Channel Estimation and Symbol Detection Scheme for Massive MIMO Systems
In this paper, a multi-user massive multiple-input and multiple-output (MIMO) uplink system is considered, in which multiple single antenna users communicate with a target BS equipped with a large antenna array. We assume both the BS and K users have no knowledge of channel statement information. For such a system, by utilizing the unique factorization of three-way tensors, we proposed a parafac-based blind channel estimation and symbol detection scheme for the massive MIMO system, the proposed system can ensure the unique identification of the channel matrix and symbol matrix in a noise-free case. In a noisy case, a novel fitting algorithm called constrained bilinear alternating least squares is proposed to efficiently estimate the channel matrix and symbols. Numerical simulation results illustrate that the proposed scheme has a superior bit error ratio and normalized mean square error performance than traditional least square method. In addition, it has a faster convergence speed than typical alternation least square fitting algorithm.