开始:使用过程可移植的基于gan的方法生成电网基准

Vidya A. Chhabria, K. Kunal, Masoud Zabihi, S. Sapatnekar
{"title":"开始:使用过程可移植的基于gan的方法生成电网基准","authors":"Vidya A. Chhabria, K. Kunal, Masoud Zabihi, S. Sapatnekar","doi":"10.1109/ICCAD51958.2021.9643566","DOIUrl":null,"url":null,"abstract":"Evaluating CAD solutions to physical implementation problems has been extremely challenging due to the unavailability of modern benchmarks in the public domain. This work aims to address this challenge by proposing a process-portable machine learning (ML)-based methodology for synthesizing synthetic power delivery network (PDN) benchmarks that obfuscate intellectual property information. In particular, the proposed approach leverages generative adversarial networks (GAN) and transfer learning techniques to create realistic PDN benchmarks from a small set of available real circuit data. BeGAN generates thousands of PDN benchmarks with significant histogram correlation (p-value ≤ 0.05) demonstrating its realism and an average L1 Norm of more than 7.1 %, highlighting its IP obfuscation capabilities. The original and thousands of ML-generated synthetic PDN benchmarks for four different open-source technologies are released in the public domain to advance research in this field.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BeGAN: Power Grid Benchmark Generation Using a Process-portable GAN-based Methodology\",\"authors\":\"Vidya A. Chhabria, K. Kunal, Masoud Zabihi, S. Sapatnekar\",\"doi\":\"10.1109/ICCAD51958.2021.9643566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating CAD solutions to physical implementation problems has been extremely challenging due to the unavailability of modern benchmarks in the public domain. This work aims to address this challenge by proposing a process-portable machine learning (ML)-based methodology for synthesizing synthetic power delivery network (PDN) benchmarks that obfuscate intellectual property information. In particular, the proposed approach leverages generative adversarial networks (GAN) and transfer learning techniques to create realistic PDN benchmarks from a small set of available real circuit data. BeGAN generates thousands of PDN benchmarks with significant histogram correlation (p-value ≤ 0.05) demonstrating its realism and an average L1 Norm of more than 7.1 %, highlighting its IP obfuscation capabilities. The original and thousands of ML-generated synthetic PDN benchmarks for four different open-source technologies are released in the public domain to advance research in this field.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于在公共领域没有可用的现代基准,评估针对物理实现问题的CAD解决方案非常具有挑战性。这项工作旨在通过提出一种基于过程便携式机器学习(ML)的方法来解决这一挑战,该方法用于合成电力输送网络(PDN)基准,从而混淆知识产权信息。特别是,所提出的方法利用生成对抗网络(GAN)和迁移学习技术,从一小部分可用的真实电路数据中创建现实的PDN基准。begin生成了数千个具有显著直方图相关性(p值≤0.05)的PDN基准,证明了它的真实感和平均L1规范超过7.1%,突出了它的IP混淆能力。在公共领域发布了针对四种不同开源技术的原始和数千个ml生成的合成PDN基准,以推进该领域的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BeGAN: Power Grid Benchmark Generation Using a Process-portable GAN-based Methodology
Evaluating CAD solutions to physical implementation problems has been extremely challenging due to the unavailability of modern benchmarks in the public domain. This work aims to address this challenge by proposing a process-portable machine learning (ML)-based methodology for synthesizing synthetic power delivery network (PDN) benchmarks that obfuscate intellectual property information. In particular, the proposed approach leverages generative adversarial networks (GAN) and transfer learning techniques to create realistic PDN benchmarks from a small set of available real circuit data. BeGAN generates thousands of PDN benchmarks with significant histogram correlation (p-value ≤ 0.05) demonstrating its realism and an average L1 Norm of more than 7.1 %, highlighting its IP obfuscation capabilities. The original and thousands of ML-generated synthetic PDN benchmarks for four different open-source technologies are released in the public domain to advance research in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate PPA Modeling with Transfer Learning Mobileware: A High-Performance MobileNet Accelerator with Channel Stationary Dataflow A General Hardware and Software Co-Design Framework for Energy-Efficient Edge AI ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1