粗到细的全局RGB-D框架配准,用于精确的室内3D模型重建

W. Darwish, Wenbin Li, Shengjun Tang, Wu Chen
{"title":"粗到细的全局RGB-D框架配准,用于精确的室内3D模型重建","authors":"W. Darwish, Wenbin Li, Shengjun Tang, Wu Chen","doi":"10.1109/ICL-GNSS.2017.8376250","DOIUrl":null,"url":null,"abstract":"The conventional approach to register two or more RGB-D frames produced from low cost depth sensors, such as KINECT and Structure Sensor, applies SIFT matched points between color images along with corresponding depth from the depth images. This is known as RGB-D SLAM. This method depends on ICP concept to refine the sensor pose after estimating it from SIFT depth points. In this research, we propose a new registration method and a new description function to add line feature matching in RGB-D frame registration. The qualitative and quantitative assessments of the proposed procedure show a significant improvement in 3D model quality and precision with the proposed new registration method.","PeriodicalId":330366,"journal":{"name":"2017 International Conference on Localization and GNSS (ICL-GNSS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Coarse to fine global RGB-D frames registration for precise indoor 3D model reconstruction\",\"authors\":\"W. Darwish, Wenbin Li, Shengjun Tang, Wu Chen\",\"doi\":\"10.1109/ICL-GNSS.2017.8376250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional approach to register two or more RGB-D frames produced from low cost depth sensors, such as KINECT and Structure Sensor, applies SIFT matched points between color images along with corresponding depth from the depth images. This is known as RGB-D SLAM. This method depends on ICP concept to refine the sensor pose after estimating it from SIFT depth points. In this research, we propose a new registration method and a new description function to add line feature matching in RGB-D frame registration. The qualitative and quantitative assessments of the proposed procedure show a significant improvement in 3D model quality and precision with the proposed new registration method.\",\"PeriodicalId\":330366,\"journal\":{\"name\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS.2017.8376250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2017.8376250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

传统的配准由低成本深度传感器(如KINECT和Structure Sensor)产生的两个或多个RGB-D帧的方法是在彩色图像之间使用SIFT匹配点以及深度图像的相应深度。这被称为RGB-D SLAM。该方法通过SIFT深度点估计传感器位姿后,利用ICP概念对传感器位姿进行细化。在本研究中,我们提出了一种新的配准方法和新的描述函数来增加RGB-D帧配准中的线特征匹配。定性和定量评估表明,该方法显著提高了三维模型的质量和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coarse to fine global RGB-D frames registration for precise indoor 3D model reconstruction
The conventional approach to register two or more RGB-D frames produced from low cost depth sensors, such as KINECT and Structure Sensor, applies SIFT matched points between color images along with corresponding depth from the depth images. This is known as RGB-D SLAM. This method depends on ICP concept to refine the sensor pose after estimating it from SIFT depth points. In this research, we propose a new registration method and a new description function to add line feature matching in RGB-D frame registration. The qualitative and quantitative assessments of the proposed procedure show a significant improvement in 3D model quality and precision with the proposed new registration method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of anchor nodes' usage for location verification systems Optimizing matched filters for GNSS receivers Trading-off location accuracy and service quality: Privacy concerns and user profiles Dealing with network changes in cellular fingerprint positioning systems High definition map-based vehicle localization for highly automated driving: Geometric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1