{"title":"动态数据结构的高级综合:使用Vivado HLS的案例研究","authors":"F. Winterstein, Samuel Bayliss, G. Constantinides","doi":"10.1109/FPT.2013.6718388","DOIUrl":null,"url":null,"abstract":"High-level synthesis promises a significant shortening of the FPGA design cycle when compared with design entry using register transfer level (RTL) languages. Recent evaluations report that C-to-RTL flows can produce results with a quality close to hand-crafted designs [1]. Algorithms which use dynamic, pointer-based data structures, which are common in software, remain difficult to implement well. In this paper, we describe a comparative case study using Xilinx Vivado HLS as an exemplary state-of-the-art high-level synthesis tool. Our test cases are two alternative algorithms for the same compute-intensive machine learning technique (clustering) with significantly different computational properties. We compare a data-flow centric implementation to a recursive tree traversal implementation which incorporates complex data-dependent control flow and makes use of pointer-linked data structures and dynamic memory allocation. The outcome of this case study is twofold: We confirm similar performance between the hand-written and automatically generated RTL designs for the first test case. The second case reveals a degradation in latency by a factor greater than 30× if the source code is not altered prior to high-level synthesis. We identify the reasons for this shortcoming and present code transformations that narrow the performance gap to a factor of four. We generalise our source-to-source transformations whose automation motivates research directions to improve high-level synthesis of dynamic data structures in the future.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"High-level synthesis of dynamic data structures: A case study using Vivado HLS\",\"authors\":\"F. Winterstein, Samuel Bayliss, G. Constantinides\",\"doi\":\"10.1109/FPT.2013.6718388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-level synthesis promises a significant shortening of the FPGA design cycle when compared with design entry using register transfer level (RTL) languages. Recent evaluations report that C-to-RTL flows can produce results with a quality close to hand-crafted designs [1]. Algorithms which use dynamic, pointer-based data structures, which are common in software, remain difficult to implement well. In this paper, we describe a comparative case study using Xilinx Vivado HLS as an exemplary state-of-the-art high-level synthesis tool. Our test cases are two alternative algorithms for the same compute-intensive machine learning technique (clustering) with significantly different computational properties. We compare a data-flow centric implementation to a recursive tree traversal implementation which incorporates complex data-dependent control flow and makes use of pointer-linked data structures and dynamic memory allocation. The outcome of this case study is twofold: We confirm similar performance between the hand-written and automatically generated RTL designs for the first test case. The second case reveals a degradation in latency by a factor greater than 30× if the source code is not altered prior to high-level synthesis. We identify the reasons for this shortcoming and present code transformations that narrow the performance gap to a factor of four. We generalise our source-to-source transformations whose automation motivates research directions to improve high-level synthesis of dynamic data structures in the future.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-level synthesis of dynamic data structures: A case study using Vivado HLS
High-level synthesis promises a significant shortening of the FPGA design cycle when compared with design entry using register transfer level (RTL) languages. Recent evaluations report that C-to-RTL flows can produce results with a quality close to hand-crafted designs [1]. Algorithms which use dynamic, pointer-based data structures, which are common in software, remain difficult to implement well. In this paper, we describe a comparative case study using Xilinx Vivado HLS as an exemplary state-of-the-art high-level synthesis tool. Our test cases are two alternative algorithms for the same compute-intensive machine learning technique (clustering) with significantly different computational properties. We compare a data-flow centric implementation to a recursive tree traversal implementation which incorporates complex data-dependent control flow and makes use of pointer-linked data structures and dynamic memory allocation. The outcome of this case study is twofold: We confirm similar performance between the hand-written and automatically generated RTL designs for the first test case. The second case reveals a degradation in latency by a factor greater than 30× if the source code is not altered prior to high-level synthesis. We identify the reasons for this shortcoming and present code transformations that narrow the performance gap to a factor of four. We generalise our source-to-source transformations whose automation motivates research directions to improve high-level synthesis of dynamic data structures in the future.