基于NOMA的MEC通信资源分配优化算法

Juan Fang, Zhenzhen Liu, Shuopeng Li, Siqi Chen, Huijing Yang
{"title":"基于NOMA的MEC通信资源分配优化算法","authors":"Juan Fang, Zhenzhen Liu, Shuopeng Li, Siqi Chen, Huijing Yang","doi":"10.1109/CCPQT56151.2022.00046","DOIUrl":null,"url":null,"abstract":"To solve the problem of communication delay and resource shortage when multiple users offload tasks at the same time in mobile edge computing (MEC), the deep reinforcement learning algorithm based on non-orthogonal multiple access (NOMA) technology was proposed to optimize users' communication resource allocation. Firstly, the taboo tag deep Q-network algorithm was used to train the relationship between users and subchannels at the users grouping stage, then the deep deterministic policy gradient algorithm was used to allocate users transmission power who sharing subchannel. The simulation results display that the proposed algorithm perform more stable than other reinforcement learning and traditional algorithm, moreover, the system sum rate have been significantly improved when multiple edge users offload tasks.","PeriodicalId":235893,"journal":{"name":"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEC Communication Resource Allocation Optimization Algorithm Based on NOMA\",\"authors\":\"Juan Fang, Zhenzhen Liu, Shuopeng Li, Siqi Chen, Huijing Yang\",\"doi\":\"10.1109/CCPQT56151.2022.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of communication delay and resource shortage when multiple users offload tasks at the same time in mobile edge computing (MEC), the deep reinforcement learning algorithm based on non-orthogonal multiple access (NOMA) technology was proposed to optimize users' communication resource allocation. Firstly, the taboo tag deep Q-network algorithm was used to train the relationship between users and subchannels at the users grouping stage, then the deep deterministic policy gradient algorithm was used to allocate users transmission power who sharing subchannel. The simulation results display that the proposed algorithm perform more stable than other reinforcement learning and traditional algorithm, moreover, the system sum rate have been significantly improved when multiple edge users offload tasks.\",\"PeriodicalId\":235893,\"journal\":{\"name\":\"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPQT56151.2022.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPQT56151.2022.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对移动边缘计算(MEC)中多个用户同时卸载任务时的通信延迟和资源短缺问题,提出了基于非正交多址(NOMA)技术的深度强化学习算法,优化用户的通信资源分配。首先,在用户分组阶段采用禁忌标签深度Q-network算法训练用户与子信道之间的关系,然后采用深度确定性策略梯度算法分配共享子信道的用户传输功率。仿真结果表明,该算法比其他强化学习算法和传统算法性能更稳定,且在多边缘用户卸载任务时,系统和速率显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEC Communication Resource Allocation Optimization Algorithm Based on NOMA
To solve the problem of communication delay and resource shortage when multiple users offload tasks at the same time in mobile edge computing (MEC), the deep reinforcement learning algorithm based on non-orthogonal multiple access (NOMA) technology was proposed to optimize users' communication resource allocation. Firstly, the taboo tag deep Q-network algorithm was used to train the relationship between users and subchannels at the users grouping stage, then the deep deterministic policy gradient algorithm was used to allocate users transmission power who sharing subchannel. The simulation results display that the proposed algorithm perform more stable than other reinforcement learning and traditional algorithm, moreover, the system sum rate have been significantly improved when multiple edge users offload tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Spaceborne Integrated High-performance Processing and Computing Platform Based on SpaceVPX An Integrated Formal Description Method for Network Attacks TD3-based Algorithm for Node Selection on Multi-tier Federated Learning An Ultra-wideband Adjustable Pulse Generator Design A Multi-class image reranking algorithm based on multiple discrete-time quantum walk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1