{"title":"COVID-19血栓形成的重新评估,被视为一个多重复杂系统","authors":"S. Coccheri","doi":"10.4081/btvb.2022.48","DOIUrl":null,"url":null,"abstract":"The aim of this essay is to re-consider the peculiar type of thrombogenesis observed in severe cases of COVID-19 infection, focusing on the multiple interconnected networks involved, such as inflammation, blood coagulation, fibrinolysis, and immune responses. These linked mechanisms can be assimilated to the “Complex Systems” (CS), that play a capital role in various domains: from physics to chemistry, biology and medicine, to social and behavioral sciences. CS are characterized by eliciting variable responses: their final results can be contradictory and often unpredictable. In fact, in severe COVID-19 various outcomes can occur, such as macro- and micro-thrombosis, vasculitis, hemorrhage, hyper and hypo fibrinolysis, distorted inflammatory and immune response, and others. The insight supplied by the CS theory in understanding thrombogenesis in COVID-19 can be useful in several ways. It recalls the importance of a “holistic” view of multiple patterns of signs, symptoms and biomarkers; stresses the added value of global versus mechanistic tests, particularly in coagulation and fibrinolysis; suggests building up small trials of selected patients in a perspective of precision medicine; discourages passive transfer of therapeutic choices from no- COVID to COVID patients; and finally indicates that some treatments, as the anti-inflammatory and the anti-coagulant ones, should be initiated as early as possible, so to avoid worsening of the condition by repetitive feedback and shortcut mechanisms.","PeriodicalId":186928,"journal":{"name":"Bleeding, Thrombosis, and Vascular Biology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A re-appraisal of thrombogenesis in COVID-19, seen as a multiple Complex System\",\"authors\":\"S. Coccheri\",\"doi\":\"10.4081/btvb.2022.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this essay is to re-consider the peculiar type of thrombogenesis observed in severe cases of COVID-19 infection, focusing on the multiple interconnected networks involved, such as inflammation, blood coagulation, fibrinolysis, and immune responses. These linked mechanisms can be assimilated to the “Complex Systems” (CS), that play a capital role in various domains: from physics to chemistry, biology and medicine, to social and behavioral sciences. CS are characterized by eliciting variable responses: their final results can be contradictory and often unpredictable. In fact, in severe COVID-19 various outcomes can occur, such as macro- and micro-thrombosis, vasculitis, hemorrhage, hyper and hypo fibrinolysis, distorted inflammatory and immune response, and others. The insight supplied by the CS theory in understanding thrombogenesis in COVID-19 can be useful in several ways. It recalls the importance of a “holistic” view of multiple patterns of signs, symptoms and biomarkers; stresses the added value of global versus mechanistic tests, particularly in coagulation and fibrinolysis; suggests building up small trials of selected patients in a perspective of precision medicine; discourages passive transfer of therapeutic choices from no- COVID to COVID patients; and finally indicates that some treatments, as the anti-inflammatory and the anti-coagulant ones, should be initiated as early as possible, so to avoid worsening of the condition by repetitive feedback and shortcut mechanisms.\",\"PeriodicalId\":186928,\"journal\":{\"name\":\"Bleeding, Thrombosis, and Vascular Biology\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bleeding, Thrombosis, and Vascular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/btvb.2022.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bleeding, Thrombosis, and Vascular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/btvb.2022.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A re-appraisal of thrombogenesis in COVID-19, seen as a multiple Complex System
The aim of this essay is to re-consider the peculiar type of thrombogenesis observed in severe cases of COVID-19 infection, focusing on the multiple interconnected networks involved, such as inflammation, blood coagulation, fibrinolysis, and immune responses. These linked mechanisms can be assimilated to the “Complex Systems” (CS), that play a capital role in various domains: from physics to chemistry, biology and medicine, to social and behavioral sciences. CS are characterized by eliciting variable responses: their final results can be contradictory and often unpredictable. In fact, in severe COVID-19 various outcomes can occur, such as macro- and micro-thrombosis, vasculitis, hemorrhage, hyper and hypo fibrinolysis, distorted inflammatory and immune response, and others. The insight supplied by the CS theory in understanding thrombogenesis in COVID-19 can be useful in several ways. It recalls the importance of a “holistic” view of multiple patterns of signs, symptoms and biomarkers; stresses the added value of global versus mechanistic tests, particularly in coagulation and fibrinolysis; suggests building up small trials of selected patients in a perspective of precision medicine; discourages passive transfer of therapeutic choices from no- COVID to COVID patients; and finally indicates that some treatments, as the anti-inflammatory and the anti-coagulant ones, should be initiated as early as possible, so to avoid worsening of the condition by repetitive feedback and shortcut mechanisms.