面向VDTN人群感知的时空体数据聚合

Y. Teranishi, Takashi Kimata, Eiji Kawai, H. Harai
{"title":"面向VDTN人群感知的时空体数据聚合","authors":"Y. Teranishi, Takashi Kimata, Eiji Kawai, H. Harai","doi":"10.1109/COMPSAC48688.2020.0-191","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a spatio-temporal data aggregation protocol in Vehicular Delay Tolerant Network (VDTN). We focus on Asynchronous Vehicular Crowdsensing Service (AVCS) to collect volume sensor data (e.g., images captured by on-board cameras) from VDTN-enabled vehicles. In AVCS, it is critical to cope with the huge redundant traffic generated by a large number of vehicles. We propose a novel protocol to aggregate volume spatio-temporal sensor data in Hybrid DTN data collection architecture. By assigning spatio-temporal identifiers (STI) to the aggregation targets in AVCS and extending the message exchange protocol to treat STI in VDTN, the redundant traffic can be significantly improved. Simulation results using a real taxi trace dataset showed the effectiveness of the proposed data aggregation protocol. The coverage of the crowdsensing was improved around 20-35% with 80% traffic reduction compared with the baseline aggregation protocol.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatio-Temporal Volume Data Aggregation for Crowdsensing in VDTN\",\"authors\":\"Y. Teranishi, Takashi Kimata, Eiji Kawai, H. Harai\",\"doi\":\"10.1109/COMPSAC48688.2020.0-191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a spatio-temporal data aggregation protocol in Vehicular Delay Tolerant Network (VDTN). We focus on Asynchronous Vehicular Crowdsensing Service (AVCS) to collect volume sensor data (e.g., images captured by on-board cameras) from VDTN-enabled vehicles. In AVCS, it is critical to cope with the huge redundant traffic generated by a large number of vehicles. We propose a novel protocol to aggregate volume spatio-temporal sensor data in Hybrid DTN data collection architecture. By assigning spatio-temporal identifiers (STI) to the aggregation targets in AVCS and extending the message exchange protocol to treat STI in VDTN, the redundant traffic can be significantly improved. Simulation results using a real taxi trace dataset showed the effectiveness of the proposed data aggregation protocol. The coverage of the crowdsensing was improved around 20-35% with 80% traffic reduction compared with the baseline aggregation protocol.\",\"PeriodicalId\":430098,\"journal\":{\"name\":\"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC48688.2020.0-191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.0-191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种车载容延迟网络(VDTN)的时空数据聚合协议。我们专注于异步车辆群体感知服务(AVCS),从支持vdtn的车辆中收集体积传感器数据(例如,车载摄像头捕获的图像)。在AVCS中,处理由大量车辆产生的大量冗余交通是至关重要的。提出了一种基于混合DTN数据采集架构的体时空传感器数据聚合协议。通过为AVCS中的聚合目标分配时空标识符(STI),并扩展消息交换协议对VDTN中的STI进行处理,可以显著改善冗余流量。仿真结果表明了所提出的数据聚合协议的有效性。与基线聚合协议相比,群体感知的覆盖范围提高了20-35%左右,流量减少了80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-Temporal Volume Data Aggregation for Crowdsensing in VDTN
In this paper, we propose a spatio-temporal data aggregation protocol in Vehicular Delay Tolerant Network (VDTN). We focus on Asynchronous Vehicular Crowdsensing Service (AVCS) to collect volume sensor data (e.g., images captured by on-board cameras) from VDTN-enabled vehicles. In AVCS, it is critical to cope with the huge redundant traffic generated by a large number of vehicles. We propose a novel protocol to aggregate volume spatio-temporal sensor data in Hybrid DTN data collection architecture. By assigning spatio-temporal identifiers (STI) to the aggregation targets in AVCS and extending the message exchange protocol to treat STI in VDTN, the redundant traffic can be significantly improved. Simulation results using a real taxi trace dataset showed the effectiveness of the proposed data aggregation protocol. The coverage of the crowdsensing was improved around 20-35% with 80% traffic reduction compared with the baseline aggregation protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The European Concept of Smart City: A Taxonomic Analysis An Early Warning System for Hemodialysis Complications Utilizing Transfer Learning from HD IoT Dataset A Systematic Literature Review of Practical Virtual and Augmented Reality Solutions in Surgery Optimization of Parallel Applications Under CPU Overcommitment A Blockchain Token Economy Model for Financing a Decentralized Electric Vehicle Charging Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1