{"title":"传感器-卫星集成网络中可选网络架构的性能评估","authors":"Suraj Verma, P. Pillai, Yim-Fun Hu","doi":"10.1109/WAINA.2013.56","DOIUrl":null,"url":null,"abstract":"The last decade has seen an exponential rise in the use of wireless sensor networks (WSNs) in various applications. While these have been primarily used on their own, researchers are now looking into ways of integrating these WSNs with other existing communication technologies. One such network is the satellite network which provides significant advantage in providing communication access to remote locations due to their inherent large coverage areas. Combining WSNs and satellite will enable us to perform efficient remotely monitoring in areas where terrestrial networks may not be present. However in such a scenario, the placement of sensor nodes is crucial in order to ensure efficient routing and energy-efficiency. This paper presents four network architectures for sensor-satellite hybrid networks, sensor-satellite direct communication, connections via a gateway node employing random node layout, grid-based node layout and cluster-based node layout with data aggregation. These architectures were simulated using network simulator 2 (ns-2) and then their packet loss rate, average end-to-end packet delay, and overall energy consumption were compared. The paper concludes by proposing a suitable network topology for environmental monitoring applications.","PeriodicalId":359251,"journal":{"name":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Performance Evaluation of Alternative Network Architectures for Sensor-Satellite Integrated Networks\",\"authors\":\"Suraj Verma, P. Pillai, Yim-Fun Hu\",\"doi\":\"10.1109/WAINA.2013.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last decade has seen an exponential rise in the use of wireless sensor networks (WSNs) in various applications. While these have been primarily used on their own, researchers are now looking into ways of integrating these WSNs with other existing communication technologies. One such network is the satellite network which provides significant advantage in providing communication access to remote locations due to their inherent large coverage areas. Combining WSNs and satellite will enable us to perform efficient remotely monitoring in areas where terrestrial networks may not be present. However in such a scenario, the placement of sensor nodes is crucial in order to ensure efficient routing and energy-efficiency. This paper presents four network architectures for sensor-satellite hybrid networks, sensor-satellite direct communication, connections via a gateway node employing random node layout, grid-based node layout and cluster-based node layout with data aggregation. These architectures were simulated using network simulator 2 (ns-2) and then their packet loss rate, average end-to-end packet delay, and overall energy consumption were compared. The paper concludes by proposing a suitable network topology for environmental monitoring applications.\",\"PeriodicalId\":359251,\"journal\":{\"name\":\"2013 27th International Conference on Advanced Information Networking and Applications Workshops\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 27th International Conference on Advanced Information Networking and Applications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2013.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2013.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Evaluation of Alternative Network Architectures for Sensor-Satellite Integrated Networks
The last decade has seen an exponential rise in the use of wireless sensor networks (WSNs) in various applications. While these have been primarily used on their own, researchers are now looking into ways of integrating these WSNs with other existing communication technologies. One such network is the satellite network which provides significant advantage in providing communication access to remote locations due to their inherent large coverage areas. Combining WSNs and satellite will enable us to perform efficient remotely monitoring in areas where terrestrial networks may not be present. However in such a scenario, the placement of sensor nodes is crucial in order to ensure efficient routing and energy-efficiency. This paper presents four network architectures for sensor-satellite hybrid networks, sensor-satellite direct communication, connections via a gateway node employing random node layout, grid-based node layout and cluster-based node layout with data aggregation. These architectures were simulated using network simulator 2 (ns-2) and then their packet loss rate, average end-to-end packet delay, and overall energy consumption were compared. The paper concludes by proposing a suitable network topology for environmental monitoring applications.