基于正则化安德鲁正弦影响函数的上频带预测的单形SISR

V. Patanavijit
{"title":"基于正则化安德鲁正弦影响函数的上频带预测的单形SISR","authors":"V. Patanavijit","doi":"10.1109/IEECON.2017.8075868","DOIUrl":null,"url":null,"abstract":"In order to achieving a fine spatial image, which are algebraically manufactured from either single crude resolution image or many crude resolution images for executing by either computer vision algorithmic techniques or Digital Image Processing (DIP) algorithmic techniques, one of the most practical algorithmic techniques in the image enlargement operation is the Super Resolution Reconstruction (SRR), especially Single-Image Super-Resolution (SISR), which is established on the image enlargement algorithmic technique that can algebraically manufacture the fine spatial image from a single crude resolution image. In this paper, the image enlargement algorithmic technique established on SISR utilizing upper-band spectrum prognosis with an alternative regularized Andrew's Sine influence function due to the fact that this SISR algorithmic technique has great achievement and requires low computational time. Unfortunately, the classical regularized function C(x, y) in the upper-band prognosis process is algebraically build upon three adjusting parameters (b, h, k) thence the parameter adjustment is time consuming in order to bring its achievement maximum. Due to this obstacle, this article proposes an alternative regularized Andrew's Sine influence function, which is algebraically build upon only one parameter (T), contrary to three parameters like the classical regularized function C(x, y), for a simplex SISR utilizing upper-band spectrum prognosis. The simulated experimentation is analyzed on up to 14 classic images, which are tarnished by different noise category and the proposed simplex SISR algorithmic technique is proved to be dramatically low computation than the original SISR with identical achievement.","PeriodicalId":196081,"journal":{"name":"2017 International Electrical Engineering Congress (iEECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simplex SISR utilizing upper-band spectrum prognosis with an alternative regularized Andrew's sine influence function\",\"authors\":\"V. Patanavijit\",\"doi\":\"10.1109/IEECON.2017.8075868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to achieving a fine spatial image, which are algebraically manufactured from either single crude resolution image or many crude resolution images for executing by either computer vision algorithmic techniques or Digital Image Processing (DIP) algorithmic techniques, one of the most practical algorithmic techniques in the image enlargement operation is the Super Resolution Reconstruction (SRR), especially Single-Image Super-Resolution (SISR), which is established on the image enlargement algorithmic technique that can algebraically manufacture the fine spatial image from a single crude resolution image. In this paper, the image enlargement algorithmic technique established on SISR utilizing upper-band spectrum prognosis with an alternative regularized Andrew's Sine influence function due to the fact that this SISR algorithmic technique has great achievement and requires low computational time. Unfortunately, the classical regularized function C(x, y) in the upper-band prognosis process is algebraically build upon three adjusting parameters (b, h, k) thence the parameter adjustment is time consuming in order to bring its achievement maximum. Due to this obstacle, this article proposes an alternative regularized Andrew's Sine influence function, which is algebraically build upon only one parameter (T), contrary to three parameters like the classical regularized function C(x, y), for a simplex SISR utilizing upper-band spectrum prognosis. The simulated experimentation is analyzed on up to 14 classic images, which are tarnished by different noise category and the proposed simplex SISR algorithmic technique is proved to be dramatically low computation than the original SISR with identical achievement.\",\"PeriodicalId\":196081,\"journal\":{\"name\":\"2017 International Electrical Engineering Congress (iEECON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Electrical Engineering Congress (iEECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEECON.2017.8075868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2017.8075868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了获得由单个或多个原始分辨率图像代数生成的精细空间图像,并由计算机视觉算法技术或数字图像处理(DIP)算法技术执行,图像放大操作中最实用的算法技术之一是超分辨率重建(SRR),特别是单图像超分辨率(SISR)。该方法建立在图像放大算法技术的基础上,该算法可以从单个粗分辨率图像代数地生成精细的空间图像。在本文中,基于SISR的图像放大算法技术,由于SISR算法技术具有很大的成就和较低的计算时间,因此基于SISR的图像放大算法技术采用了带有替代正则化安德鲁正弦影响函数的上频带频谱预测。遗憾的是,上带预测过程中的经典正则函数C(x, y)在代数上是建立在三个调整参数(b, h, k)上的,因此为了使其效果最大化,参数调整是非常耗时的。由于这一障碍,本文提出了一种替代正则化安德鲁正弦影响函数,该函数在代数上仅建立在一个参数(T)上,而不是像经典正则化函数C(x, y)那样建立在三个参数上,用于利用上频段频谱预测的单纯型SISR。在多达14幅不同噪声类型的经典图像上进行了模拟实验,结果表明,所提出的单纯形SISR算法在取得相同效果的情况下,计算量显著低于原SISR算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simplex SISR utilizing upper-band spectrum prognosis with an alternative regularized Andrew's sine influence function
In order to achieving a fine spatial image, which are algebraically manufactured from either single crude resolution image or many crude resolution images for executing by either computer vision algorithmic techniques or Digital Image Processing (DIP) algorithmic techniques, one of the most practical algorithmic techniques in the image enlargement operation is the Super Resolution Reconstruction (SRR), especially Single-Image Super-Resolution (SISR), which is established on the image enlargement algorithmic technique that can algebraically manufacture the fine spatial image from a single crude resolution image. In this paper, the image enlargement algorithmic technique established on SISR utilizing upper-band spectrum prognosis with an alternative regularized Andrew's Sine influence function due to the fact that this SISR algorithmic technique has great achievement and requires low computational time. Unfortunately, the classical regularized function C(x, y) in the upper-band prognosis process is algebraically build upon three adjusting parameters (b, h, k) thence the parameter adjustment is time consuming in order to bring its achievement maximum. Due to this obstacle, this article proposes an alternative regularized Andrew's Sine influence function, which is algebraically build upon only one parameter (T), contrary to three parameters like the classical regularized function C(x, y), for a simplex SISR utilizing upper-band spectrum prognosis. The simulated experimentation is analyzed on up to 14 classic images, which are tarnished by different noise category and the proposed simplex SISR algorithmic technique is proved to be dramatically low computation than the original SISR with identical achievement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive power flow control for reducing peak demand and maximizing renewable energy usage Fuzzy based random pulse width modulation technique for performance improvement of induction motor Condition evaluation of power transformers using dissolved gas analysis and dielectric breakdown voltage test The hybrid photovoltaic energy system for electric vehicle battery charger Analysis and modeling of wind turbine generators considering frequency controls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1