利用监督机器学习从反射光谱检测COVID-19抗体

Ciao-Ming Tsai, Chitsung Hong, W. Kong, Wei-Huai Chiu, Cheng-Hao Ko, W. Fang
{"title":"利用监督机器学习从反射光谱检测COVID-19抗体","authors":"Ciao-Ming Tsai, Chitsung Hong, W. Kong, Wei-Huai Chiu, Cheng-Hao Ko, W. Fang","doi":"10.1109/SENSORS52175.2022.9967070","DOIUrl":null,"url":null,"abstract":"Since the coronavirus disease 2019 occurred, the lateral flow immunoassay (LFIA) test strip has become a global testing tool for convenience and low cost. However, some studies have shown that LFIA strips perform poorly compared to other professional testing methods. This paper proposes a new method to improve the accuracy of LFIA strips using spectral signals. A spectrochip module is applied to disperse the reflected light from the LFIA strips. The obtained spectral signals will be used for supervised machine learning. After training, the trained model has 93.8% accuracy compared to the standard test. This result indicated that the evaluation method based on the spectrum of LFIA strips could enhance the detection performance.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Antibodies for COVID-19 from Reflectance Spectrum Using Supervised Machine Learning\",\"authors\":\"Ciao-Ming Tsai, Chitsung Hong, W. Kong, Wei-Huai Chiu, Cheng-Hao Ko, W. Fang\",\"doi\":\"10.1109/SENSORS52175.2022.9967070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the coronavirus disease 2019 occurred, the lateral flow immunoassay (LFIA) test strip has become a global testing tool for convenience and low cost. However, some studies have shown that LFIA strips perform poorly compared to other professional testing methods. This paper proposes a new method to improve the accuracy of LFIA strips using spectral signals. A spectrochip module is applied to disperse the reflected light from the LFIA strips. The obtained spectral signals will be used for supervised machine learning. After training, the trained model has 93.8% accuracy compared to the standard test. This result indicated that the evaluation method based on the spectrum of LFIA strips could enhance the detection performance.\",\"PeriodicalId\":120357,\"journal\":{\"name\":\"2022 IEEE Sensors\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS52175.2022.9967070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自2019冠状病毒病发生以来,侧流免疫分析法(LFIA)试纸条以其便捷、低成本的优势成为一种全球性的检测工具。然而,一些研究表明,与其他专业测试方法相比,LFIA试纸的性能较差。本文提出了一种利用光谱信号提高LFIA条带精度的新方法。光谱芯片模块用于分散来自LFIA条带的反射光。获得的光谱信号将用于监督机器学习。训练后的模型与标准测试相比准确率达到93.8%。结果表明,基于LFIA条带的光谱评价方法可以提高检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Antibodies for COVID-19 from Reflectance Spectrum Using Supervised Machine Learning
Since the coronavirus disease 2019 occurred, the lateral flow immunoassay (LFIA) test strip has become a global testing tool for convenience and low cost. However, some studies have shown that LFIA strips perform poorly compared to other professional testing methods. This paper proposes a new method to improve the accuracy of LFIA strips using spectral signals. A spectrochip module is applied to disperse the reflected light from the LFIA strips. The obtained spectral signals will be used for supervised machine learning. After training, the trained model has 93.8% accuracy compared to the standard test. This result indicated that the evaluation method based on the spectrum of LFIA strips could enhance the detection performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-intrusive Water Flow Rate Measurement: A TEG-powered Ultrasonic Sensing Approach Design of optical inclinometer composed of a ball lens and viscosity fluid to improve focusing Fall Event Detection using Vision Transformer Porous Silicon-Based Microspectral Unit for Real-Time Moisture Detection in a Battery-less Smart Mask Twisted and Coiled Carbon Nanotube Yarn Muscle Embedding Ferritin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1