探索基因组学信息检索的多源融合方法

Qinmin Hu, Xiangji Huang, Jun Miao
{"title":"探索基因组学信息检索的多源融合方法","authors":"Qinmin Hu, Xiangji Huang, Jun Miao","doi":"10.1109/BIBM.2010.5706649","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the biomedicine domain to propose a multi-source fusion approach for improving information retrieval performance. First, we consider a common scenario for a metasearch system that has access to multiple baselines with retrieving and ranking documents/passages by their own models. Second, given selected baselines from multiple sources, we employ two modified fusion rules in the proposed approach, reciprocal and combMNZ, to rerank the candidates as the output for evaluation. Third, our empirical study on both 2007 and 2006 genomics data sets demonstrates the viability of the proposed approach to better performance fusion. Fourth, the experimental results show that the reciprocal method provides notable improvements on the individual baseline, especially on the effective passage MAP, the passage2-level and the diversity MAP, the aspect-level.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploring a multi-source fusion approach for genomics information retrieval\",\"authors\":\"Qinmin Hu, Xiangji Huang, Jun Miao\",\"doi\":\"10.1109/BIBM.2010.5706649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the biomedicine domain to propose a multi-source fusion approach for improving information retrieval performance. First, we consider a common scenario for a metasearch system that has access to multiple baselines with retrieving and ranking documents/passages by their own models. Second, given selected baselines from multiple sources, we employ two modified fusion rules in the proposed approach, reciprocal and combMNZ, to rerank the candidates as the output for evaluation. Third, our empirical study on both 2007 and 2006 genomics data sets demonstrates the viability of the proposed approach to better performance fusion. Fourth, the experimental results show that the reciprocal method provides notable improvements on the individual baseline, especially on the effective passage MAP, the passage2-level and the diversity MAP, the aspect-level.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"2009 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文以生物医学领域为研究对象,提出了一种多源信息融合方法来提高信息检索性能。首先,我们考虑一个元搜索系统的常见场景,该系统可以访问多个基线,并通过自己的模型检索和排序文档/段落。其次,给定来自多个来源的选定基线,我们在所提出的方法中使用两个改进的融合规则,互惠和组合,将候选基线重新排序作为评估的输出。第三,我们对2007年和2006年基因组学数据集的实证研究表明,该方法具有更好的性能融合的可行性。第四,实验结果表明,互反方法在个体基线上有显著的改进,特别是在有效通道MAP(通道2级)和多样性MAP(方面级)上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring a multi-source fusion approach for genomics information retrieval
In this paper, we focus on the biomedicine domain to propose a multi-source fusion approach for improving information retrieval performance. First, we consider a common scenario for a metasearch system that has access to multiple baselines with retrieving and ranking documents/passages by their own models. Second, given selected baselines from multiple sources, we employ two modified fusion rules in the proposed approach, reciprocal and combMNZ, to rerank the candidates as the output for evaluation. Third, our empirical study on both 2007 and 2006 genomics data sets demonstrates the viability of the proposed approach to better performance fusion. Fourth, the experimental results show that the reciprocal method provides notable improvements on the individual baseline, especially on the effective passage MAP, the passage2-level and the diversity MAP, the aspect-level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1