{"title":"多二元分类器分析不符合决策:用于管道布置自动化评价","authors":"Wei-Chian Tan, I. Chen, H. K. Tan","doi":"10.1109/COASE.2017.8256079","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to analyse decision from existing framework on automated evaluation of piping layout or design for reason of non-compliance. On top of Histogram of Connectivity and linear Support Vector Machines based approach for prediction if a design is compliant or non-compliant, multiple binary classifiers are trained using linear Support Vector Machines to classify a non-compliant design further according to nature of non-compliance, in space of Histogram of Connectivity. Non-compliant designs in existing dataset of Regulation 12, Annex I, International Convention for the Prevention of Pollution from Ships are further divided into separate categories according to reason of non-compliance. For each sub-category of non-compliance, a binary classifier is trained using linear Support Vector Machines by taking all non-compliant designs belonging to current category as positive and all others as negative class. Existing dataset of 1318 non-compliant designs is divided into seven sub-categories. Developed method has demonstrated encouraging performance on existing dataset of International Convention for the Prevention of Pollution from Ships.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple binary classifiers to analyse decision of non-compliance: For automated evaluation of piping layout\",\"authors\":\"Wei-Chian Tan, I. Chen, H. K. Tan\",\"doi\":\"10.1109/COASE.2017.8256079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to analyse decision from existing framework on automated evaluation of piping layout or design for reason of non-compliance. On top of Histogram of Connectivity and linear Support Vector Machines based approach for prediction if a design is compliant or non-compliant, multiple binary classifiers are trained using linear Support Vector Machines to classify a non-compliant design further according to nature of non-compliance, in space of Histogram of Connectivity. Non-compliant designs in existing dataset of Regulation 12, Annex I, International Convention for the Prevention of Pollution from Ships are further divided into separate categories according to reason of non-compliance. For each sub-category of non-compliance, a binary classifier is trained using linear Support Vector Machines by taking all non-compliant designs belonging to current category as positive and all others as negative class. Existing dataset of 1318 non-compliant designs is divided into seven sub-categories. Developed method has demonstrated encouraging performance on existing dataset of International Convention for the Prevention of Pollution from Ships.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple binary classifiers to analyse decision of non-compliance: For automated evaluation of piping layout
This paper presents an approach to analyse decision from existing framework on automated evaluation of piping layout or design for reason of non-compliance. On top of Histogram of Connectivity and linear Support Vector Machines based approach for prediction if a design is compliant or non-compliant, multiple binary classifiers are trained using linear Support Vector Machines to classify a non-compliant design further according to nature of non-compliance, in space of Histogram of Connectivity. Non-compliant designs in existing dataset of Regulation 12, Annex I, International Convention for the Prevention of Pollution from Ships are further divided into separate categories according to reason of non-compliance. For each sub-category of non-compliance, a binary classifier is trained using linear Support Vector Machines by taking all non-compliant designs belonging to current category as positive and all others as negative class. Existing dataset of 1318 non-compliant designs is divided into seven sub-categories. Developed method has demonstrated encouraging performance on existing dataset of International Convention for the Prevention of Pollution from Ships.