基于加权马尔可夫随机场的高光谱图像分类的GPU实现

Zebin Wu, Qicong Wang, A. Plaza, Jun Li, Jie Wei, Zhihui Wei
{"title":"基于加权马尔可夫随机场的高光谱图像分类的GPU实现","authors":"Zebin Wu, Qicong Wang, A. Plaza, Jun Li, Jie Wei, Zhihui Wei","doi":"10.1109/WHISPERS.2016.8071791","DOIUrl":null,"url":null,"abstract":"The dimensionality of hyperspectral data is very high, and spectral-spatial hyperspectral classification techniques are quite demanding from a computational viewpoint. In this paper, we present a computationally efficient implementation of a spectral-spatial classification method based on weighted Markov random fields. The method learns the spectral information from a sparse multinomial logistic regression (SMLR) classifier, and the spatial information is characterized by modeling the potential function associated with a weighted Markov random field (MRF) as a spatially adaptive vector total variation function. The parallel implementation has been carried out using commodity graphics processing units (GPUs) and the NVIDIA's compute unified device architecture (CUDA), thus exploiting the massively parallel nature of GPUs to achieve significant acceleration factors with regards to the serial version of the same classifier on an NVIDIA Tesla C2075 platform.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GPU implementation of hyperspectral image classification based on weighted Markov random fields\",\"authors\":\"Zebin Wu, Qicong Wang, A. Plaza, Jun Li, Jie Wei, Zhihui Wei\",\"doi\":\"10.1109/WHISPERS.2016.8071791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dimensionality of hyperspectral data is very high, and spectral-spatial hyperspectral classification techniques are quite demanding from a computational viewpoint. In this paper, we present a computationally efficient implementation of a spectral-spatial classification method based on weighted Markov random fields. The method learns the spectral information from a sparse multinomial logistic regression (SMLR) classifier, and the spatial information is characterized by modeling the potential function associated with a weighted Markov random field (MRF) as a spatially adaptive vector total variation function. The parallel implementation has been carried out using commodity graphics processing units (GPUs) and the NVIDIA's compute unified device architecture (CUDA), thus exploiting the massively parallel nature of GPUs to achieve significant acceleration factors with regards to the serial version of the same classifier on an NVIDIA Tesla C2075 platform.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高光谱数据的维数非常高,光谱-空间高光谱分类技术从计算角度来说要求很高。本文提出了一种基于加权马尔可夫随机场的光谱空间分类方法的计算效率实现。该方法从稀疏多项式逻辑回归(SMLR)分类器中学习光谱信息,并通过将加权马尔可夫随机场(MRF)相关的势函数建模为空间自适应向量总变分函数来表征空间信息。并行实现使用商用图形处理单元(gpu)和NVIDIA的计算统一设备架构(CUDA)进行,从而利用gpu的大规模并行特性,在NVIDIA Tesla C2075平台上实现与串行版本相同分类器相比的显著加速因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU implementation of hyperspectral image classification based on weighted Markov random fields
The dimensionality of hyperspectral data is very high, and spectral-spatial hyperspectral classification techniques are quite demanding from a computational viewpoint. In this paper, we present a computationally efficient implementation of a spectral-spatial classification method based on weighted Markov random fields. The method learns the spectral information from a sparse multinomial logistic regression (SMLR) classifier, and the spatial information is characterized by modeling the potential function associated with a weighted Markov random field (MRF) as a spatially adaptive vector total variation function. The parallel implementation has been carried out using commodity graphics processing units (GPUs) and the NVIDIA's compute unified device architecture (CUDA), thus exploiting the massively parallel nature of GPUs to achieve significant acceleration factors with regards to the serial version of the same classifier on an NVIDIA Tesla C2075 platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1