对象、规则和过程控制

E. Bristol
{"title":"对象、规则和过程控制","authors":"E. Bristol","doi":"10.23919/ACC.1989.4790403","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) suggests the paradox of the solution of problems not subject to any systematic analysis. In Process Control, this impression is attractive - we need solutions. It is also unacceptable - we need formal confidence in our designs. This paper adopts three bases to overcome the paradox: *The formal analysis of such AI structures as Rules and Objects; *The analysis of higher level control system issues that might be fruitfully modeled by AI structures; *The discussion of computer-aided methods for analyzing and validating Process Control AI systems. Specifically, this paper examines Objects and Rules as examples of Self-Marshaling Functions, and their utility for modeling, documenting, and implementing control systems.","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Objects, Rules, and Process Control\",\"authors\":\"E. Bristol\",\"doi\":\"10.23919/ACC.1989.4790403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) suggests the paradox of the solution of problems not subject to any systematic analysis. In Process Control, this impression is attractive - we need solutions. It is also unacceptable - we need formal confidence in our designs. This paper adopts three bases to overcome the paradox: *The formal analysis of such AI structures as Rules and Objects; *The analysis of higher level control system issues that might be fruitfully modeled by AI structures; *The discussion of computer-aided methods for analyzing and validating Process Control AI systems. Specifically, this paper examines Objects and Rules as examples of Self-Marshaling Functions, and their utility for modeling, documenting, and implementing control systems.\",\"PeriodicalId\":383719,\"journal\":{\"name\":\"1989 American Control Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1989 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1989.4790403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1989.4790403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人工智能(AI)提出了不经过任何系统分析就能解决问题的悖论。在过程控制中,这种印象很有吸引力——我们需要解决方案。这也是不可接受的——我们需要对我们的设计有正式的信心。本文采用三个基础来克服这一悖论:*对规则和对象等人工智能结构进行形式化分析;*分析更高级的控制系统问题,这些问题可能会被人工智能结构有效地建模;*讨论分析和验证过程控制人工智能系统的计算机辅助方法。具体地说,本文将对象和规则作为自编组功能的例子,以及它们在建模、记录和实现控制系统方面的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Objects, Rules, and Process Control
Artificial Intelligence (AI) suggests the paradox of the solution of problems not subject to any systematic analysis. In Process Control, this impression is attractive - we need solutions. It is also unacceptable - we need formal confidence in our designs. This paper adopts three bases to overcome the paradox: *The formal analysis of such AI structures as Rules and Objects; *The analysis of higher level control system issues that might be fruitfully modeled by AI structures; *The discussion of computer-aided methods for analyzing and validating Process Control AI systems. Specifically, this paper examines Objects and Rules as examples of Self-Marshaling Functions, and their utility for modeling, documenting, and implementing control systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Localizer Capture and Track using Classical Control Techniques Integration of Active and Passive Sensors for Obstacle Avoidance Neuromorphic Pitch Attitute Regulation of an Underwater Telerobot The Differential Analyzer as an Active Mathematical Instrument: Control Applied to Mechanism and Circuitry Optimal Rocket Maneuvers in Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1