基于骨架的动作识别的时间感知图卷积网络

Yulai Xie, Yang Zhang, Fang Ren
{"title":"基于骨架的动作识别的时间感知图卷积网络","authors":"Yulai Xie, Yang Zhang, Fang Ren","doi":"10.1145/3484274.3484288","DOIUrl":null,"url":null,"abstract":"Graph convolutions networks (GCN) have drawn attention for skeleton-based action recognition because a skeleton with joints and bones can be naturally regarded as a graph structure. However, the existing methods are limited in temporal sequence modeling of human actions. To consider temporal factors in action modeling, we present a novel Temporal-Aware Graph Convolution Network (TA-GCN). First, we design a causal temporal convolution (CTCN) layer to ensure no impractical future information leakage to the past. Second, we present a novel cross-spatial-temporal graph convolution (3D-GCN) layer that extends an adaptive graph from the spatial to the temporal domain to capture local cross-spatial-temporal dependencies among joints. Involving the two temporal factors, TA-GCN can model the sequential nature of human actions. Experimental results on two large-scale datasets, NTU-RGB+D and Kinetics-Skeleton, indicate that our network achieves accuracy improvement (about 1% on the two datasets) over previous methods.","PeriodicalId":143540,"journal":{"name":"Proceedings of the 4th International Conference on Control and Computer Vision","volume":"25 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal-Aware Graph Convolution Network for Skeleton-based Action Recognition\",\"authors\":\"Yulai Xie, Yang Zhang, Fang Ren\",\"doi\":\"10.1145/3484274.3484288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph convolutions networks (GCN) have drawn attention for skeleton-based action recognition because a skeleton with joints and bones can be naturally regarded as a graph structure. However, the existing methods are limited in temporal sequence modeling of human actions. To consider temporal factors in action modeling, we present a novel Temporal-Aware Graph Convolution Network (TA-GCN). First, we design a causal temporal convolution (CTCN) layer to ensure no impractical future information leakage to the past. Second, we present a novel cross-spatial-temporal graph convolution (3D-GCN) layer that extends an adaptive graph from the spatial to the temporal domain to capture local cross-spatial-temporal dependencies among joints. Involving the two temporal factors, TA-GCN can model the sequential nature of human actions. Experimental results on two large-scale datasets, NTU-RGB+D and Kinetics-Skeleton, indicate that our network achieves accuracy improvement (about 1% on the two datasets) over previous methods.\",\"PeriodicalId\":143540,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Control and Computer Vision\",\"volume\":\"25 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Control and Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3484274.3484288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Control and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3484274.3484288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图卷积网络(GCN)在基于骨骼的动作识别中引起了人们的关注,因为具有关节和骨骼的骨骼可以自然地视为一个图结构。然而,现有的方法在人类行为的时间序列建模方面存在局限性。为了考虑动作建模中的时间因素,我们提出了一种新的时间感知图卷积网络(TA-GCN)。首先,我们设计了一个因果时间卷积(CTCN)层,以确保不向过去泄露不切实际的未来信息。其次,我们提出了一种新的跨时空图卷积(3D-GCN)层,该层将自适应图从空间域扩展到时间域,以捕获关节之间的局部跨时空依赖关系。涉及这两个时间因素,TA-GCN可以模拟人类活动的顺序性质。在NTU-RGB+D和Kinetics-Skeleton两个大型数据集上的实验结果表明,我们的网络比以前的方法获得了精度提高(在两个数据集上约1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal-Aware Graph Convolution Network for Skeleton-based Action Recognition
Graph convolutions networks (GCN) have drawn attention for skeleton-based action recognition because a skeleton with joints and bones can be naturally regarded as a graph structure. However, the existing methods are limited in temporal sequence modeling of human actions. To consider temporal factors in action modeling, we present a novel Temporal-Aware Graph Convolution Network (TA-GCN). First, we design a causal temporal convolution (CTCN) layer to ensure no impractical future information leakage to the past. Second, we present a novel cross-spatial-temporal graph convolution (3D-GCN) layer that extends an adaptive graph from the spatial to the temporal domain to capture local cross-spatial-temporal dependencies among joints. Involving the two temporal factors, TA-GCN can model the sequential nature of human actions. Experimental results on two large-scale datasets, NTU-RGB+D and Kinetics-Skeleton, indicate that our network achieves accuracy improvement (about 1% on the two datasets) over previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Object Detection Algorithm Combining FPN Structure With DETR DIB: Piled Man-made Object Detection and Pose Estimation in Point Cloud Blocks A Multi-Scale Self-Attention Network for Diabetic Retinopathy Retrieval Ensemble Multilayer Perceptron Model for Day-ahead Photovoltaic Forecasting Improvement of Detection Rate for Small Objects Using Pre-processing Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1