{"title":"基于骨架的动作识别的时间感知图卷积网络","authors":"Yulai Xie, Yang Zhang, Fang Ren","doi":"10.1145/3484274.3484288","DOIUrl":null,"url":null,"abstract":"Graph convolutions networks (GCN) have drawn attention for skeleton-based action recognition because a skeleton with joints and bones can be naturally regarded as a graph structure. However, the existing methods are limited in temporal sequence modeling of human actions. To consider temporal factors in action modeling, we present a novel Temporal-Aware Graph Convolution Network (TA-GCN). First, we design a causal temporal convolution (CTCN) layer to ensure no impractical future information leakage to the past. Second, we present a novel cross-spatial-temporal graph convolution (3D-GCN) layer that extends an adaptive graph from the spatial to the temporal domain to capture local cross-spatial-temporal dependencies among joints. Involving the two temporal factors, TA-GCN can model the sequential nature of human actions. Experimental results on two large-scale datasets, NTU-RGB+D and Kinetics-Skeleton, indicate that our network achieves accuracy improvement (about 1% on the two datasets) over previous methods.","PeriodicalId":143540,"journal":{"name":"Proceedings of the 4th International Conference on Control and Computer Vision","volume":"25 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal-Aware Graph Convolution Network for Skeleton-based Action Recognition\",\"authors\":\"Yulai Xie, Yang Zhang, Fang Ren\",\"doi\":\"10.1145/3484274.3484288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph convolutions networks (GCN) have drawn attention for skeleton-based action recognition because a skeleton with joints and bones can be naturally regarded as a graph structure. However, the existing methods are limited in temporal sequence modeling of human actions. To consider temporal factors in action modeling, we present a novel Temporal-Aware Graph Convolution Network (TA-GCN). First, we design a causal temporal convolution (CTCN) layer to ensure no impractical future information leakage to the past. Second, we present a novel cross-spatial-temporal graph convolution (3D-GCN) layer that extends an adaptive graph from the spatial to the temporal domain to capture local cross-spatial-temporal dependencies among joints. Involving the two temporal factors, TA-GCN can model the sequential nature of human actions. Experimental results on two large-scale datasets, NTU-RGB+D and Kinetics-Skeleton, indicate that our network achieves accuracy improvement (about 1% on the two datasets) over previous methods.\",\"PeriodicalId\":143540,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Control and Computer Vision\",\"volume\":\"25 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Control and Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3484274.3484288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Control and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3484274.3484288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal-Aware Graph Convolution Network for Skeleton-based Action Recognition
Graph convolutions networks (GCN) have drawn attention for skeleton-based action recognition because a skeleton with joints and bones can be naturally regarded as a graph structure. However, the existing methods are limited in temporal sequence modeling of human actions. To consider temporal factors in action modeling, we present a novel Temporal-Aware Graph Convolution Network (TA-GCN). First, we design a causal temporal convolution (CTCN) layer to ensure no impractical future information leakage to the past. Second, we present a novel cross-spatial-temporal graph convolution (3D-GCN) layer that extends an adaptive graph from the spatial to the temporal domain to capture local cross-spatial-temporal dependencies among joints. Involving the two temporal factors, TA-GCN can model the sequential nature of human actions. Experimental results on two large-scale datasets, NTU-RGB+D and Kinetics-Skeleton, indicate that our network achieves accuracy improvement (about 1% on the two datasets) over previous methods.