基于随机梯度下降算法的轨道车辆等速时间估计

M. Akçay
{"title":"基于随机梯度下降算法的轨道车辆等速时间估计","authors":"M. Akçay","doi":"10.35377/saucis.03.03.805598","DOIUrl":null,"url":null,"abstract":"While the investments in rail transportation systems continue without slowing down, various optimization issues come to the fore in order for the systems to work more efficiently. One of the most important of these issues is the optimization of the vehicle speed profile. Improvement in vehicle speed profile increases efficiency in operating traffic. Vehicle speed profile varies depending on the electrical-characteristic features of the vehicle, the distance between the stations and the line geometry. The vehicle's speed profile consists of several parts, such as acceleration, constant speed travel and braking zones. The constant speed in the constant velocity zone refers to the max operating speed, which is recommended for operation in the restricted area and remains within the limits. This part is critical in creating the speed profile of the vehicle. In this study, the estimation of the value of the constant speed time in the speed profile of the vehicles used in the city metro systems was made by using the Stochastic Gradient Descent method, which is one of the machine learning methods, and compared with various well-known methods. Coefficient of determination (R 2 ) values were calculated as 0.9955 and 0.9951, respectively, with random sampling hold out and cross validation methods.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimation of constant speed time for railway vehicles by stochastic gradient descent algorithm\",\"authors\":\"M. Akçay\",\"doi\":\"10.35377/saucis.03.03.805598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the investments in rail transportation systems continue without slowing down, various optimization issues come to the fore in order for the systems to work more efficiently. One of the most important of these issues is the optimization of the vehicle speed profile. Improvement in vehicle speed profile increases efficiency in operating traffic. Vehicle speed profile varies depending on the electrical-characteristic features of the vehicle, the distance between the stations and the line geometry. The vehicle's speed profile consists of several parts, such as acceleration, constant speed travel and braking zones. The constant speed in the constant velocity zone refers to the max operating speed, which is recommended for operation in the restricted area and remains within the limits. This part is critical in creating the speed profile of the vehicle. In this study, the estimation of the value of the constant speed time in the speed profile of the vehicles used in the city metro systems was made by using the Stochastic Gradient Descent method, which is one of the machine learning methods, and compared with various well-known methods. Coefficient of determination (R 2 ) values were calculated as 0.9955 and 0.9951, respectively, with random sampling hold out and cross validation methods.\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/saucis.03.03.805598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis.03.03.805598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

虽然对铁路运输系统的投资仍在继续,但为了使系统更有效地工作,各种优化问题浮出水面。其中最重要的问题之一是车辆速度剖面的优化。车辆速度剖面的改善提高了运营交通的效率。车辆的速度分布取决于车辆的电气特性、车站之间的距离和线路的几何形状。车辆的速度剖面由几个部分组成,如加速、匀速行驶和制动区。等速区域内的等速是指最大运行速度,建议在限制区内运行,并保持在限定范围内。这部分对于创建车辆的速度轮廓至关重要。本研究采用机器学习方法之一的随机梯度下降法对城市地铁车辆速度剖面中匀速时间的值进行估计,并与各种已知方法进行比较。采用随机抽样法和交叉验证法,计算出决定系数(r2)值分别为0.9955和0.9951。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of constant speed time for railway vehicles by stochastic gradient descent algorithm
While the investments in rail transportation systems continue without slowing down, various optimization issues come to the fore in order for the systems to work more efficiently. One of the most important of these issues is the optimization of the vehicle speed profile. Improvement in vehicle speed profile increases efficiency in operating traffic. Vehicle speed profile varies depending on the electrical-characteristic features of the vehicle, the distance between the stations and the line geometry. The vehicle's speed profile consists of several parts, such as acceleration, constant speed travel and braking zones. The constant speed in the constant velocity zone refers to the max operating speed, which is recommended for operation in the restricted area and remains within the limits. This part is critical in creating the speed profile of the vehicle. In this study, the estimation of the value of the constant speed time in the speed profile of the vehicles used in the city metro systems was made by using the Stochastic Gradient Descent method, which is one of the machine learning methods, and compared with various well-known methods. Coefficient of determination (R 2 ) values were calculated as 0.9955 and 0.9951, respectively, with random sampling hold out and cross validation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Cardiovascular Disease Based on Voting Ensemble Model and SHAP Analysis A NOVEL ADDITIVE INTERNET OF THINGS (IoT) FEATURES AND CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION AND SOURCE IDENTIFICATION OF IoT DEVICES High-Capacity Multiplier Design Using Look Up Table Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning Price Prediction Using Web Scraping and Machine Learning Algorithms in the Used Car Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1