{"title":"使用具有复杂连接拓扑的细胞神经网络测量定向相互作用","authors":"Henning Dickten, C. Elger, K. Lehnertz","doi":"10.1142/9789814525350_0018","DOIUrl":null,"url":null,"abstract":"We advance our approach of analyzing the dynamics of interacting complex systems with the nonlinear dynamics of interacting nonlinear elements. We replace the widely used lattice-like connection topology of cellular neural networks (CNN) by complex topologies that include both short- and long-ranged connections. With an exemplary time-resolved analysis of asymmetric nonlinear interdependences between the seizure generating area and its immediate surrounding we provide first evidence for complex CNN connection topologies to allow for a faster network optimization together with an improved approximation accuracy of directed interactions.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Measuring directed interactions using cellular neural networks with complex connection topologies\",\"authors\":\"Henning Dickten, C. Elger, K. Lehnertz\",\"doi\":\"10.1142/9789814525350_0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We advance our approach of analyzing the dynamics of interacting complex systems with the nonlinear dynamics of interacting nonlinear elements. We replace the widely used lattice-like connection topology of cellular neural networks (CNN) by complex topologies that include both short- and long-ranged connections. With an exemplary time-resolved analysis of asymmetric nonlinear interdependences between the seizure generating area and its immediate surrounding we provide first evidence for complex CNN connection topologies to allow for a faster network optimization together with an improved approximation accuracy of directed interactions.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789814525350_0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814525350_0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring directed interactions using cellular neural networks with complex connection topologies
We advance our approach of analyzing the dynamics of interacting complex systems with the nonlinear dynamics of interacting nonlinear elements. We replace the widely used lattice-like connection topology of cellular neural networks (CNN) by complex topologies that include both short- and long-ranged connections. With an exemplary time-resolved analysis of asymmetric nonlinear interdependences between the seizure generating area and its immediate surrounding we provide first evidence for complex CNN connection topologies to allow for a faster network optimization together with an improved approximation accuracy of directed interactions.