Justin Chu, Wen-Tse Yang, Tung-Han Hsieh, Fu-Liang Yang
{"title":"1分钟手指脉动测量用于糖尿病快速筛查,假阴性预测率为1.3% ~ 13%","authors":"Justin Chu, Wen-Tse Yang, Tung-Han Hsieh, Fu-Liang Yang","doi":"10.11648/J.BSI.20210601.12","DOIUrl":null,"url":null,"abstract":"Previous non-invasive Diabetes Mellitus (DM) prediction methods for rapid screening suffered from the trade-off between speed and accuracy. The accurate results of questionnaires rely on long and detailed questions thus sacrifice speed, meanwhile, photoplethysmography (PPG) offers convenient and fast testing but lacking accuracy. In this work, we developed a 5-grade model to accurately screen out non-DM subjects (low prediction grades) via one-minute PPG measurement. This efficient and effective rapid screening will practically reduce the loading for further invasive verification on the remaining DM-grade subjects. A total of 2538 subjects are recruited (DM: 1310, non-DM: 1228) with two 1-minute PPG samples taken from each subject. The model includes 8 features: 3 autonomic- and 3 vascular-related PPG features, heart rate, and waist circumference. All 8 features monotonically alter with increased DM prediction grade. The model provides users 5 DM risk grades. While defined grade 1 and grade 2 as non-DM grades, the prediction result shows a low false-negative rate of 13%. If only considering grade 1 as non-DM, the false-negative rate will be significantly reduced to 1.3%. Thus subjects predicted as grades 1 and 2 are substantially away from DM. The remaining subjects with higher DM risk grades such as grades 3, 4, and 5 (or unlikely grade 2) are recommended to take clinical-standard invasive DM test for corresponding therapeutic treatment. A table for assessing the risk index for each feature is also compiled. We have experimentally demonstrated a 1-minute pulsation measurement with PPG-based device (SpO 2 oximeter, smartphone, or wearable device) can be an efficient/effective DM rapid screening technique to filter out non-DM subjects. The resulted high-risk feature indexes also pose as warning signs of the degradation of either autonomic or vascular functions for personal healthcare management. The fast and convenient execution and useful results suggest that our approach is very simple and informative for quick DM risk assessment.","PeriodicalId":219184,"journal":{"name":"Biomedical Statistics and Informatics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"One-Minute Finger Pulsation Measurement for Diabetes Rapid Screening with 1.3% to 13% False-Negative Prediction Rate\",\"authors\":\"Justin Chu, Wen-Tse Yang, Tung-Han Hsieh, Fu-Liang Yang\",\"doi\":\"10.11648/J.BSI.20210601.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous non-invasive Diabetes Mellitus (DM) prediction methods for rapid screening suffered from the trade-off between speed and accuracy. The accurate results of questionnaires rely on long and detailed questions thus sacrifice speed, meanwhile, photoplethysmography (PPG) offers convenient and fast testing but lacking accuracy. In this work, we developed a 5-grade model to accurately screen out non-DM subjects (low prediction grades) via one-minute PPG measurement. This efficient and effective rapid screening will practically reduce the loading for further invasive verification on the remaining DM-grade subjects. A total of 2538 subjects are recruited (DM: 1310, non-DM: 1228) with two 1-minute PPG samples taken from each subject. The model includes 8 features: 3 autonomic- and 3 vascular-related PPG features, heart rate, and waist circumference. All 8 features monotonically alter with increased DM prediction grade. The model provides users 5 DM risk grades. While defined grade 1 and grade 2 as non-DM grades, the prediction result shows a low false-negative rate of 13%. If only considering grade 1 as non-DM, the false-negative rate will be significantly reduced to 1.3%. Thus subjects predicted as grades 1 and 2 are substantially away from DM. The remaining subjects with higher DM risk grades such as grades 3, 4, and 5 (or unlikely grade 2) are recommended to take clinical-standard invasive DM test for corresponding therapeutic treatment. A table for assessing the risk index for each feature is also compiled. We have experimentally demonstrated a 1-minute pulsation measurement with PPG-based device (SpO 2 oximeter, smartphone, or wearable device) can be an efficient/effective DM rapid screening technique to filter out non-DM subjects. The resulted high-risk feature indexes also pose as warning signs of the degradation of either autonomic or vascular functions for personal healthcare management. The fast and convenient execution and useful results suggest that our approach is very simple and informative for quick DM risk assessment.\",\"PeriodicalId\":219184,\"journal\":{\"name\":\"Biomedical Statistics and Informatics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Statistics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.BSI.20210601.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.BSI.20210601.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One-Minute Finger Pulsation Measurement for Diabetes Rapid Screening with 1.3% to 13% False-Negative Prediction Rate
Previous non-invasive Diabetes Mellitus (DM) prediction methods for rapid screening suffered from the trade-off between speed and accuracy. The accurate results of questionnaires rely on long and detailed questions thus sacrifice speed, meanwhile, photoplethysmography (PPG) offers convenient and fast testing but lacking accuracy. In this work, we developed a 5-grade model to accurately screen out non-DM subjects (low prediction grades) via one-minute PPG measurement. This efficient and effective rapid screening will practically reduce the loading for further invasive verification on the remaining DM-grade subjects. A total of 2538 subjects are recruited (DM: 1310, non-DM: 1228) with two 1-minute PPG samples taken from each subject. The model includes 8 features: 3 autonomic- and 3 vascular-related PPG features, heart rate, and waist circumference. All 8 features monotonically alter with increased DM prediction grade. The model provides users 5 DM risk grades. While defined grade 1 and grade 2 as non-DM grades, the prediction result shows a low false-negative rate of 13%. If only considering grade 1 as non-DM, the false-negative rate will be significantly reduced to 1.3%. Thus subjects predicted as grades 1 and 2 are substantially away from DM. The remaining subjects with higher DM risk grades such as grades 3, 4, and 5 (or unlikely grade 2) are recommended to take clinical-standard invasive DM test for corresponding therapeutic treatment. A table for assessing the risk index for each feature is also compiled. We have experimentally demonstrated a 1-minute pulsation measurement with PPG-based device (SpO 2 oximeter, smartphone, or wearable device) can be an efficient/effective DM rapid screening technique to filter out non-DM subjects. The resulted high-risk feature indexes also pose as warning signs of the degradation of either autonomic or vascular functions for personal healthcare management. The fast and convenient execution and useful results suggest that our approach is very simple and informative for quick DM risk assessment.