考虑风电不确定性的电、气一体化系统优化调度

D. Jiandong, Yang Yao, Jin Zhuanting, Cheng Yulin
{"title":"考虑风电不确定性的电、气一体化系统优化调度","authors":"D. Jiandong, Yang Yao, Jin Zhuanting, Cheng Yulin","doi":"10.1109/ICIEA.2019.8833843","DOIUrl":null,"url":null,"abstract":"This paper uses ARMA model to model the prediction error of wind power, and obtains the probability distribution of the prediction error by probability statistical analysis to simulate the uncertainty of wind power. Latin hypercube simulation is used to sample typical wind power prediction errors, and a large number of wind power scenarios are reduced. On this basis, taking into account the power-to-gas, a optimal dispatch model of the integrated power and gas systems(IPGS) is established with the objective of minimizing the operation cost of the system. The CPLEX solver is used to complete the solution of the model. Finally, modified 6-bus power system and 7-node natural gas system are used to construct an IPGS. This paper uses this IPGS to do the simulation test and cases studies. Which verifies the effectiveness of the model, and further reveals the advantages of power-to-gas in promoting wind power absorption and improving system operation economy.","PeriodicalId":311302,"journal":{"name":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Dispatch of Integrated Power and Gas Systems Considering Wind Power Uncertainty\",\"authors\":\"D. Jiandong, Yang Yao, Jin Zhuanting, Cheng Yulin\",\"doi\":\"10.1109/ICIEA.2019.8833843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses ARMA model to model the prediction error of wind power, and obtains the probability distribution of the prediction error by probability statistical analysis to simulate the uncertainty of wind power. Latin hypercube simulation is used to sample typical wind power prediction errors, and a large number of wind power scenarios are reduced. On this basis, taking into account the power-to-gas, a optimal dispatch model of the integrated power and gas systems(IPGS) is established with the objective of minimizing the operation cost of the system. The CPLEX solver is used to complete the solution of the model. Finally, modified 6-bus power system and 7-node natural gas system are used to construct an IPGS. This paper uses this IPGS to do the simulation test and cases studies. Which verifies the effectiveness of the model, and further reveals the advantages of power-to-gas in promoting wind power absorption and improving system operation economy.\",\"PeriodicalId\":311302,\"journal\":{\"name\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2019.8833843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2019.8833843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用ARMA模型对风电的预测误差进行建模,并通过概率统计分析得到预测误差的概率分布,模拟风电的不确定性。采用拉丁超立方体模拟对典型的风电预测误差进行采样,减少了大量的风电情景。在此基础上,考虑电改气,以系统运行成本最小为目标,建立了电气一体化系统的优化调度模型。采用CPLEX求解器完成模型的求解。最后,采用改进的6总线电力系统和7节点天然气系统构建IPGS。本文利用该IPGS进行了仿真测试和案例研究。验证了模型的有效性,进一步揭示了电改气在促进风电吸收、提高系统运行经济性方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Dispatch of Integrated Power and Gas Systems Considering Wind Power Uncertainty
This paper uses ARMA model to model the prediction error of wind power, and obtains the probability distribution of the prediction error by probability statistical analysis to simulate the uncertainty of wind power. Latin hypercube simulation is used to sample typical wind power prediction errors, and a large number of wind power scenarios are reduced. On this basis, taking into account the power-to-gas, a optimal dispatch model of the integrated power and gas systems(IPGS) is established with the objective of minimizing the operation cost of the system. The CPLEX solver is used to complete the solution of the model. Finally, modified 6-bus power system and 7-node natural gas system are used to construct an IPGS. This paper uses this IPGS to do the simulation test and cases studies. Which verifies the effectiveness of the model, and further reveals the advantages of power-to-gas in promoting wind power absorption and improving system operation economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Sensors to Measure Speed of Oil Flow in Downhole Pipes Energy efficiency analysis of a liquefied natural gas and electric power combined transmission system Design and analysis of a novel tip-tilt stage with high precision for space applications Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis Smart Home Energy Management Optimization Method Considering ESS and PEV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1