亚共晶Al - fe合金:Al基体溶解形成和表征金属间化合物

Amauri Garcia, P. Goulart, F. Bertelli, J. Spinelli, N. Cheung
{"title":"亚共晶Al - fe合金:Al基体溶解形成和表征金属间化合物","authors":"Amauri Garcia, P. Goulart, F. Bertelli, J. Spinelli, N. Cheung","doi":"10.1201/9781351045636-140000305","DOIUrl":null,"url":null,"abstract":"A careful technique of dissolution of the Al-rich phase is conducted in hypoeutectic Al–Fe alloys samples, which were solidified under a wide range of cooling rates envisaging deeper investigations on the skeletal arrangement of either Al6Fe intermetallic fibers or Al3Fe plates, and their dependence on solidification thermal parameters. The experiments were carried out with hypoeutectic Al–Fe alloys, subjected to equilibrium solidification from the melt, steady-state solidification (Bridgman growth), transient directional solidification in water-cooled and air-cooled molds and rapid solidification (laser remelting), thus permitting a significant range of microstructural scales to be examined. It is shown that Al6Fe prevails for cooling rates >1.5 K/s, and that a short zone of coexistence of Al3Fe and Al6Fe phases exists for cooling rates <1.5 K/s, which is rapidly replaced with the prevalence of Al3Fe intermetallics with further decrease in cooling rate. In contrast, even with high values of cooling rate, typical of the laser remelting process, the Al–Al3Fe eutectic is shown to prevail.","PeriodicalId":348912,"journal":{"name":"Encyclopedia of Aluminum and Its Alloys","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoeutectic Al–Fe Alloys: Formation and Characterization of Intermetallics by Dissolution of the Al Matrix\",\"authors\":\"Amauri Garcia, P. Goulart, F. Bertelli, J. Spinelli, N. Cheung\",\"doi\":\"10.1201/9781351045636-140000305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A careful technique of dissolution of the Al-rich phase is conducted in hypoeutectic Al–Fe alloys samples, which were solidified under a wide range of cooling rates envisaging deeper investigations on the skeletal arrangement of either Al6Fe intermetallic fibers or Al3Fe plates, and their dependence on solidification thermal parameters. The experiments were carried out with hypoeutectic Al–Fe alloys, subjected to equilibrium solidification from the melt, steady-state solidification (Bridgman growth), transient directional solidification in water-cooled and air-cooled molds and rapid solidification (laser remelting), thus permitting a significant range of microstructural scales to be examined. It is shown that Al6Fe prevails for cooling rates >1.5 K/s, and that a short zone of coexistence of Al3Fe and Al6Fe phases exists for cooling rates <1.5 K/s, which is rapidly replaced with the prevalence of Al3Fe intermetallics with further decrease in cooling rate. In contrast, even with high values of cooling rate, typical of the laser remelting process, the Al–Al3Fe eutectic is shown to prevail.\",\"PeriodicalId\":348912,\"journal\":{\"name\":\"Encyclopedia of Aluminum and Its Alloys\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Aluminum and Its Alloys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781351045636-140000305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Aluminum and Its Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351045636-140000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在广泛冷却速率下凝固的亚共晶Al-Fe合金样品中,对富al相的溶解进行了仔细的研究,设想对Al6Fe金属间纤维或Al3Fe板的骨骼排列及其对凝固热参数的依赖进行了更深入的研究。实验是用亚共晶Al-Fe合金进行的,经过熔体平衡凝固、稳态凝固(Bridgman生长)、水冷和风冷模具中的瞬态定向凝固以及快速凝固(激光重熔),从而可以检查大量的微观组织尺度。结果表明,当冷却速率为> ~ 1.5 K/s时,Al6Fe相占主导地位;当冷却速率<1.5 K/s时,Al3Fe相和Al6Fe相存在短暂共存区,随着冷却速率的进一步降低,Al3Fe相迅速被Al3Fe金属间化合物所取代。相反,即使在激光重熔过程中冷却速率很高的情况下,Al-Al3Fe共晶仍然存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hypoeutectic Al–Fe Alloys: Formation and Characterization of Intermetallics by Dissolution of the Al Matrix
A careful technique of dissolution of the Al-rich phase is conducted in hypoeutectic Al–Fe alloys samples, which were solidified under a wide range of cooling rates envisaging deeper investigations on the skeletal arrangement of either Al6Fe intermetallic fibers or Al3Fe plates, and their dependence on solidification thermal parameters. The experiments were carried out with hypoeutectic Al–Fe alloys, subjected to equilibrium solidification from the melt, steady-state solidification (Bridgman growth), transient directional solidification in water-cooled and air-cooled molds and rapid solidification (laser remelting), thus permitting a significant range of microstructural scales to be examined. It is shown that Al6Fe prevails for cooling rates >1.5 K/s, and that a short zone of coexistence of Al3Fe and Al6Fe phases exists for cooling rates <1.5 K/s, which is rapidly replaced with the prevalence of Al3Fe intermetallics with further decrease in cooling rate. In contrast, even with high values of cooling rate, typical of the laser remelting process, the Al–Al3Fe eutectic is shown to prevail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welding Parameters for Aluminum Alloys Computer Vision for Fault Detection in Aluminum Castings Quality Parameters for High-Pressure Diecastings 6XXX Alloys: Chemical Composition and Heat Treatment Quench Factor Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1