两相非线性随机回归模型的极大似然估计

Gabriela Ciuperca
{"title":"两相非线性随机回归模型的极大似然估计","authors":"Gabriela Ciuperca","doi":"10.1524/stnd.22.4.335.64312","DOIUrl":null,"url":null,"abstract":"Summury We consider a two-phase random design nonlinear regression model, the regression function is discontinuous at the change-point. The errors ∊ are arbitrary, with E(∊) = 0 and E(∊2) < ∞. We prove that Koul and Qian’s results [12] for linear regression still hold true for the nonlinear case. Thus the maximum likelihood estimator r^n of the change-point r is n-consistent and the estimator θ^1n of the regression parameters θ1 is n1/2-consistent. The asymptotic distribution of n1/2(θ^1n − θ01) is Gaussian and n(r^n − r) converges to the left end point of the maximizing interval with respect to the change point. The likelihood process is asymptotically equivalent to a compound Poisson process.","PeriodicalId":380446,"journal":{"name":"Statistics & Decisions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Maximum likelihood estimator in a two-phase nonlinear random regression model\",\"authors\":\"Gabriela Ciuperca\",\"doi\":\"10.1524/stnd.22.4.335.64312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summury We consider a two-phase random design nonlinear regression model, the regression function is discontinuous at the change-point. The errors ∊ are arbitrary, with E(∊) = 0 and E(∊2) < ∞. We prove that Koul and Qian’s results [12] for linear regression still hold true for the nonlinear case. Thus the maximum likelihood estimator r^n of the change-point r is n-consistent and the estimator θ^1n of the regression parameters θ1 is n1/2-consistent. The asymptotic distribution of n1/2(θ^1n − θ01) is Gaussian and n(r^n − r) converges to the left end point of the maximizing interval with respect to the change point. The likelihood process is asymptotically equivalent to a compound Poisson process.\",\"PeriodicalId\":380446,\"journal\":{\"name\":\"Statistics & Decisions\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1524/stnd.22.4.335.64312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/stnd.22.4.335.64312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

考虑两阶段随机设计非线性回归模型,回归函数在变点处不连续。误差是任意的,E() = 0, E(2) <∞。我们证明了Koul和Qian关于线性回归的结果[12]对于非线性情况仍然成立。因此,变化点r的最大似然估计量r^n是n一致的,回归参数θ1的估计量θ^1n是n1/2一致的。n /2(θ^1n−θ01)的渐近分布是高斯分布,n(r^n−r)相对于变化点收敛于最大区间的左端点。似然过程渐近等价于复合泊松过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum likelihood estimator in a two-phase nonlinear random regression model
Summury We consider a two-phase random design nonlinear regression model, the regression function is discontinuous at the change-point. The errors ∊ are arbitrary, with E(∊) = 0 and E(∊2) < ∞. We prove that Koul and Qian’s results [12] for linear regression still hold true for the nonlinear case. Thus the maximum likelihood estimator r^n of the change-point r is n-consistent and the estimator θ^1n of the regression parameters θ1 is n1/2-consistent. The asymptotic distribution of n1/2(θ^1n − θ01) is Gaussian and n(r^n − r) converges to the left end point of the maximizing interval with respect to the change point. The likelihood process is asymptotically equivalent to a compound Poisson process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A BAYESIAN APPROACH TO INCORPORATE MODEL AMBIGUITY IN A DYNAMIC RISK MEASURE Efficient estimation of a linear functional of a bivariate distribution with equal, but unknown, marginals: The minimum chi-square approach Locally asymptotically optimal tests in semiparametric generalized linear models in the 2-sample-problem Maximum likelihood estimator in a two-phase nonlinear random regression model Confidence estimation of the covariance function of stationary and locally stationary processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1