利用优化特征的软计算技术进行土地覆盖/土地利用制图

S. Rajesh, T. Nisia
{"title":"利用优化特征的软计算技术进行土地覆盖/土地利用制图","authors":"S. Rajesh, T. Nisia","doi":"10.5772/intechopen.86218","DOIUrl":null,"url":null,"abstract":"The chapter discusses soft computing techniques for solving complex computational tasks. It highlights some of the soft computing techniques like fuzzy logic, genetic algorithm, artificial neural network, and machine learning. The classification of the remotely sensed images is always a tedious task. So, here we explain how these soft computing techniques could be used for image classification. Image classification mainly concentrates on the feature ’ s extraction process. The features extracted in an efficient manner improve classification accuracy. Hence, the different kinds of features and different methods for these extractions are explained. The best extracted features are selected using genetic algorithm. Various algorithms are shown and comparisons are made. Finally, the results are verified using a hypothetical case study.","PeriodicalId":113441,"journal":{"name":"Land Use Change and Sustainability","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Land Cover/Land Use Mapping Using Soft Computing Techniques with Optimized Features\",\"authors\":\"S. Rajesh, T. Nisia\",\"doi\":\"10.5772/intechopen.86218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter discusses soft computing techniques for solving complex computational tasks. It highlights some of the soft computing techniques like fuzzy logic, genetic algorithm, artificial neural network, and machine learning. The classification of the remotely sensed images is always a tedious task. So, here we explain how these soft computing techniques could be used for image classification. Image classification mainly concentrates on the feature ’ s extraction process. The features extracted in an efficient manner improve classification accuracy. Hence, the different kinds of features and different methods for these extractions are explained. The best extracted features are selected using genetic algorithm. Various algorithms are shown and comparisons are made. Finally, the results are verified using a hypothetical case study.\",\"PeriodicalId\":113441,\"journal\":{\"name\":\"Land Use Change and Sustainability\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Use Change and Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.86218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Use Change and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.86218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章讨论解决复杂计算任务的软计算技术。它强调了一些软计算技术,如模糊逻辑、遗传算法、人工神经网络和机器学习。遥感影像的分类一直是一项繁琐的工作。因此,我们在这里解释如何将这些软计算技术用于图像分类。图像分类主要集中在特征的提取过程。有效提取的特征提高了分类精度。因此,解释了这些提取的不同类型的特征和不同的方法。利用遗传算法选择提取的最佳特征。给出了各种算法并进行了比较。最后,通过一个假设的案例研究对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Land Cover/Land Use Mapping Using Soft Computing Techniques with Optimized Features
The chapter discusses soft computing techniques for solving complex computational tasks. It highlights some of the soft computing techniques like fuzzy logic, genetic algorithm, artificial neural network, and machine learning. The classification of the remotely sensed images is always a tedious task. So, here we explain how these soft computing techniques could be used for image classification. Image classification mainly concentrates on the feature ’ s extraction process. The features extracted in an efficient manner improve classification accuracy. Hence, the different kinds of features and different methods for these extractions are explained. The best extracted features are selected using genetic algorithm. Various algorithms are shown and comparisons are made. Finally, the results are verified using a hypothetical case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban Built-Up Property Formation Process in the Peri-Urban Areas of Ethiopia Effects of Rural Land Tenure System on Mangroves Management in Corentyne, Guyana Land Cover/Land Use Mapping Using Soft Computing Techniques with Optimized Features Applying Systems Analysis to Evaluate Options for Sustainable Use of Peatlands in Central Kalimantan in Indonesia The Effects of Green Energy Production on Farmland: A Case Study in Yunlin County, Taiwan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1