微阵列实验的优化设计

Han-Yu Chuang, Huai-Kuang Tsai, Cheng-Yan Kao
{"title":"微阵列实验的优化设计","authors":"Han-Yu Chuang, Huai-Kuang Tsai, Cheng-Yan Kao","doi":"10.1109/ISPAN.2004.1300547","DOIUrl":null,"url":null,"abstract":"This paper proposes a genetic algorithm to find the optimal array sets for microarray experimental design problems. Based on family competition, heterogeneous pairing selection and two new genetic operators, the proposed method can find the optimal designs of limited experimental materials under a statistical model (ANOVA). The proposed method is applied to several design problems whose numbers of target mRNA samples range from 5 to 70, which are more extensive than classical studies, with different number of arrays. We apply A-optimality criterion to get best possible designs with the smallest average variance when comparisons between all pairs of treatments are of equal interest. Experimental results demonstrate that our approach can find the optimum of each testing problem rapidly.","PeriodicalId":198404,"journal":{"name":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","volume":"1 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal designs for microarray experiments\",\"authors\":\"Han-Yu Chuang, Huai-Kuang Tsai, Cheng-Yan Kao\",\"doi\":\"10.1109/ISPAN.2004.1300547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a genetic algorithm to find the optimal array sets for microarray experimental design problems. Based on family competition, heterogeneous pairing selection and two new genetic operators, the proposed method can find the optimal designs of limited experimental materials under a statistical model (ANOVA). The proposed method is applied to several design problems whose numbers of target mRNA samples range from 5 to 70, which are more extensive than classical studies, with different number of arrays. We apply A-optimality criterion to get best possible designs with the smallest average variance when comparisons between all pairs of treatments are of equal interest. Experimental results demonstrate that our approach can find the optimum of each testing problem rapidly.\",\"PeriodicalId\":198404,\"journal\":{\"name\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"volume\":\"1 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPAN.2004.1300547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2004.1300547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对微阵列实验设计问题,提出了一种寻找最优阵列集的遗传算法。该方法基于家族竞争、异质配对选择和两个新的遗传算子,在统计模型(ANOVA)下找到有限实验材料的最优设计。本文提出的方法适用于目标mRNA样本数量在5 ~ 70个之间的设计问题,这比经典研究更广泛,具有不同数量的阵列。当所有处理对之间的比较具有相同的兴趣时,我们应用a -最优性准则以获得具有最小平均方差的最佳可能设计。实验结果表明,该方法可以快速找到每个测试问题的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal designs for microarray experiments
This paper proposes a genetic algorithm to find the optimal array sets for microarray experimental design problems. Based on family competition, heterogeneous pairing selection and two new genetic operators, the proposed method can find the optimal designs of limited experimental materials under a statistical model (ANOVA). The proposed method is applied to several design problems whose numbers of target mRNA samples range from 5 to 70, which are more extensive than classical studies, with different number of arrays. We apply A-optimality criterion to get best possible designs with the smallest average variance when comparisons between all pairs of treatments are of equal interest. Experimental results demonstrate that our approach can find the optimum of each testing problem rapidly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proxy placement in coordinated en-route transcoding caching for tree networks Optimal adaptive fault diagnosis of cubic Hamiltonian graphs The spanning diameter of the star graphs Particle swarm optimization algorithm in signal detection and blind extraction An approach to achieve message efficient early-stopping uniform consensus protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1