gps拒绝环境下mav的空中交互研究

Aarón López Luna, J. Martínez-Carranza, I. Vega
{"title":"gps拒绝环境下mav的空中交互研究","authors":"Aarón López Luna, J. Martínez-Carranza, I. Vega","doi":"10.1109/REDUAS47371.2019.8999686","DOIUrl":null,"url":null,"abstract":"We propose an aerial Interaction system based on a micro aerial vehicle (MAV) with a two degree of freedom (DOF) arm incorporated in the lower part of the frame. There are numerous potential benefits of physical interaction with the environment. However, the process of approaching a MAV to an object or a surface also brings challenging control problems. Additionally, potential scenarios are usually inadequate for the use of Global Positioning System (GPS) technology, usually used for the MAV’s pose measurement in the control algorithms. In this work, a Gain-Scheduling (GS) approach is incorporated into a conventional Proportional-Integral-Derivative (PID) control algorithm to solve the problem of successfully touch a rigid surface in flight mode with no collisions. The Simultaneous Localization and Mapping (SLAM) approach is incorporated in the control loop as an alternative to the GPS. Visual SlAM utilizes images captured from a monocular camera onboard the MAV. Once captured, images are passed to an RGB-Depth SLAM system. Thus, MAV’s pose can be estimated with a metric, which is then considered into the interaction control. Experimental testing results demonstrate satisfactory performance of the proposed control strategy.","PeriodicalId":351115,"journal":{"name":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Aerial Interaction of MAVs in GPS-Denied Environments\",\"authors\":\"Aarón López Luna, J. Martínez-Carranza, I. Vega\",\"doi\":\"10.1109/REDUAS47371.2019.8999686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an aerial Interaction system based on a micro aerial vehicle (MAV) with a two degree of freedom (DOF) arm incorporated in the lower part of the frame. There are numerous potential benefits of physical interaction with the environment. However, the process of approaching a MAV to an object or a surface also brings challenging control problems. Additionally, potential scenarios are usually inadequate for the use of Global Positioning System (GPS) technology, usually used for the MAV’s pose measurement in the control algorithms. In this work, a Gain-Scheduling (GS) approach is incorporated into a conventional Proportional-Integral-Derivative (PID) control algorithm to solve the problem of successfully touch a rigid surface in flight mode with no collisions. The Simultaneous Localization and Mapping (SLAM) approach is incorporated in the control loop as an alternative to the GPS. Visual SlAM utilizes images captured from a monocular camera onboard the MAV. Once captured, images are passed to an RGB-Depth SLAM system. Thus, MAV’s pose can be estimated with a metric, which is then considered into the interaction control. Experimental testing results demonstrate satisfactory performance of the proposed control strategy.\",\"PeriodicalId\":351115,\"journal\":{\"name\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REDUAS47371.2019.8999686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDUAS47371.2019.8999686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于微型飞行器(MAV)的空中相互作用系统,该系统在框架的下部包含一个二自由度(DOF)臂。身体与环境的互动有许多潜在的好处。然而,将MAV靠近物体或表面的过程也带来了具有挑战性的控制问题。此外,潜在的场景通常不适合使用全球定位系统(GPS)技术,该技术通常用于控制算法中的MAV姿态测量。在这项工作中,将增益调度(GS)方法纳入传统的比例-积分-导数(PID)控制算法中,以解决在飞行模式下无碰撞地成功接触刚性表面的问题。同时定位和绘图(SLAM)方法被纳入控制回路,作为GPS的替代方案。视觉SlAM利用从MAV上的单目摄像机捕获的图像。一旦捕获,图像被传递到RGB-Depth SLAM系统。因此,可以用度量估计MAV的姿态,然后将其考虑到交互控制中。实验测试结果表明,所提出的控制策略具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Aerial Interaction of MAVs in GPS-Denied Environments
We propose an aerial Interaction system based on a micro aerial vehicle (MAV) with a two degree of freedom (DOF) arm incorporated in the lower part of the frame. There are numerous potential benefits of physical interaction with the environment. However, the process of approaching a MAV to an object or a surface also brings challenging control problems. Additionally, potential scenarios are usually inadequate for the use of Global Positioning System (GPS) technology, usually used for the MAV’s pose measurement in the control algorithms. In this work, a Gain-Scheduling (GS) approach is incorporated into a conventional Proportional-Integral-Derivative (PID) control algorithm to solve the problem of successfully touch a rigid surface in flight mode with no collisions. The Simultaneous Localization and Mapping (SLAM) approach is incorporated in the control loop as an alternative to the GPS. Visual SlAM utilizes images captured from a monocular camera onboard the MAV. Once captured, images are passed to an RGB-Depth SLAM system. Thus, MAV’s pose can be estimated with a metric, which is then considered into the interaction control. Experimental testing results demonstrate satisfactory performance of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Multi-Target Tracking with D-DBSCAN Clustering Cognitive Communication Scheme for Unmanned Aerial Vehicle Operation A Nonlinear Attitude Controller for Drones with CMG (Control Momentum Gyro) Decentralized Hybrid Flocking Guidance for a Swarm of Small UAVs RED UAS 2019 Keyword Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1