基于非线性矢量网络分析仪数据的多时间尺度大信号场效应管模型

Jianjun Xu, J. Horn, M. Iwamoto, D. Root
{"title":"基于非线性矢量网络分析仪数据的多时间尺度大信号场效应管模型","authors":"Jianjun Xu, J. Horn, M. Iwamoto, D. Root","doi":"10.1109/MWSYM.2010.5516843","DOIUrl":null,"url":null,"abstract":"A non-quasi static large-signal FET model is presented incorporating self-heating and other multiple timescale dynamics necessary to describe the large-signal behavior of III–V FET technologies including GaAs and GaN. The model is unique in that it incorporates electro-thermal and trapping dynamics (gate lag and drain lag) into both the model current source and the model nonlinear output charge source, for the first time. The model is developed from large-signal waveform data obtained from a modern nonlinear vector network analyzer (NVNA), working in concert with an output tuner and bias supplies. The dependences of Id and Qd on temperature, two trap states, and instantaneous terminal voltages are identified directly from NVNA data. Artificial neural networks are used to represent these constitutive relations for a compiled implementation into a commercial nonlinear circuit simulator (Agilent ADS). Detailed comparisons to large-signal measured data are presented.","PeriodicalId":341557,"journal":{"name":"2010 IEEE MTT-S International Microwave Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Large-signal FET model with multiple time scale dynamics from nonlinear vector network analyzer data\",\"authors\":\"Jianjun Xu, J. Horn, M. Iwamoto, D. Root\",\"doi\":\"10.1109/MWSYM.2010.5516843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-quasi static large-signal FET model is presented incorporating self-heating and other multiple timescale dynamics necessary to describe the large-signal behavior of III–V FET technologies including GaAs and GaN. The model is unique in that it incorporates electro-thermal and trapping dynamics (gate lag and drain lag) into both the model current source and the model nonlinear output charge source, for the first time. The model is developed from large-signal waveform data obtained from a modern nonlinear vector network analyzer (NVNA), working in concert with an output tuner and bias supplies. The dependences of Id and Qd on temperature, two trap states, and instantaneous terminal voltages are identified directly from NVNA data. Artificial neural networks are used to represent these constitutive relations for a compiled implementation into a commercial nonlinear circuit simulator (Agilent ADS). Detailed comparisons to large-signal measured data are presented.\",\"PeriodicalId\":341557,\"journal\":{\"name\":\"2010 IEEE MTT-S International Microwave Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE MTT-S International Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2010.5516843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2010.5516843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

提出了一种非准静态大信号场效应管模型,该模型结合了自热和其他多时间尺度动力学,以描述包括GaAs和GaN在内的III-V场效应管技术的大信号行为。该模型的独特之处在于,它首次将电热和捕获动力学(栅极滞后和漏极滞后)纳入模型电流源和模型非线性输出电荷源。该模型由现代非线性矢量网络分析仪(NVNA)获得的大信号波形数据开发而成,与输出调谐器和偏置电源协同工作。从NVNA数据中直接确定了Id和Qd对温度、两个陷阱状态和瞬时终端电压的依赖关系。在商业非线性电路模拟器(Agilent ADS)的编译实现中,使用人工神经网络来表示这些本构关系。并与大信号实测数据进行了详细比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-signal FET model with multiple time scale dynamics from nonlinear vector network analyzer data
A non-quasi static large-signal FET model is presented incorporating self-heating and other multiple timescale dynamics necessary to describe the large-signal behavior of III–V FET technologies including GaAs and GaN. The model is unique in that it incorporates electro-thermal and trapping dynamics (gate lag and drain lag) into both the model current source and the model nonlinear output charge source, for the first time. The model is developed from large-signal waveform data obtained from a modern nonlinear vector network analyzer (NVNA), working in concert with an output tuner and bias supplies. The dependences of Id and Qd on temperature, two trap states, and instantaneous terminal voltages are identified directly from NVNA data. Artificial neural networks are used to represent these constitutive relations for a compiled implementation into a commercial nonlinear circuit simulator (Agilent ADS). Detailed comparisons to large-signal measured data are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new approach to design low cost, low complexity phased arrays Use of ground planes within the spatial images technique: Application to the analysis of rectangular multilayered shielded enclosures Negative and zero group velocity in microstrip/negative-refractive-index transmission-line couplers A dual-mode mm-wave injection-locked frequency divider with greater than 18% locking range in 65nm CMOS Asymmetric multilevel outphasing transmitter using class-E PAs with discrete pulse width modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1