{"title":"基于副本感知的混合临界协同调度","authors":"Eberle A. Rambo, R. Ernst","doi":"10.4230/LIPIcs.ECRTS.2017.20","DOIUrl":null,"url":null,"abstract":"Cross-layer fault-tolerance solutions are the key to effectively and efficiently increase the reliability in future safety-critical real-time systems. Replicated software execution with hardware support for error detection is a cross-layer approach that exploits future many-core platforms to increase reliability without resorting to redundancy in hardware. The performance of such systems, however, strongly depends on the scheduler. Standard schedulers, such as Partitioned Strict Priority Preemptive (SPP) and Time-Division Multiplexing (TDM)-based ones, although widely employed, provide poor performance in face of replicated execution. In this paper, we propose the replica-aware co-scheduling for mixed-critical systems. Experimental results show schedulability improvements of more than 1.5x when compared to TDM and 6.9x when compared to SPP. 1998 ACM Subject Classification C.4 Performance of Systems","PeriodicalId":191379,"journal":{"name":"Euromicro Conference on Real-Time Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Replica-Aware Co-Scheduling for Mixed-Criticality\",\"authors\":\"Eberle A. Rambo, R. Ernst\",\"doi\":\"10.4230/LIPIcs.ECRTS.2017.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-layer fault-tolerance solutions are the key to effectively and efficiently increase the reliability in future safety-critical real-time systems. Replicated software execution with hardware support for error detection is a cross-layer approach that exploits future many-core platforms to increase reliability without resorting to redundancy in hardware. The performance of such systems, however, strongly depends on the scheduler. Standard schedulers, such as Partitioned Strict Priority Preemptive (SPP) and Time-Division Multiplexing (TDM)-based ones, although widely employed, provide poor performance in face of replicated execution. In this paper, we propose the replica-aware co-scheduling for mixed-critical systems. Experimental results show schedulability improvements of more than 1.5x when compared to TDM and 6.9x when compared to SPP. 1998 ACM Subject Classification C.4 Performance of Systems\",\"PeriodicalId\":191379,\"journal\":{\"name\":\"Euromicro Conference on Real-Time Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euromicro Conference on Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ECRTS.2017.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ECRTS.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-layer fault-tolerance solutions are the key to effectively and efficiently increase the reliability in future safety-critical real-time systems. Replicated software execution with hardware support for error detection is a cross-layer approach that exploits future many-core platforms to increase reliability without resorting to redundancy in hardware. The performance of such systems, however, strongly depends on the scheduler. Standard schedulers, such as Partitioned Strict Priority Preemptive (SPP) and Time-Division Multiplexing (TDM)-based ones, although widely employed, provide poor performance in face of replicated execution. In this paper, we propose the replica-aware co-scheduling for mixed-critical systems. Experimental results show schedulability improvements of more than 1.5x when compared to TDM and 6.9x when compared to SPP. 1998 ACM Subject Classification C.4 Performance of Systems