{"title":"Thirteen Hard Cases in Visual Tracking","authors":"D. M. Chu, A. Smeulders","doi":"10.1109/AVSS.2010.85","DOIUrl":null,"url":null,"abstract":"Visual tracking is a fundamental task in computer vision. However there has been no systematic way of analyzing visual trackers so far. In this paper we propose a method that can help researchers determine strengths and weaknesses of any visual tracker. To this end, we consider visual tracking as an isolated problem and decompose it into fundamental and independent subproblems. Each subproblem is designed to associate with a different tracking circumstance. By evaluating a visual tracker onto a specific subproblem, we can determine how good it is with respect to that dimension. In total we come up with thirteen subproblems in our decomposition. We demonstrate the use of our proposed method by analyzing working conditions of two state-of-theart trackers.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"32 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

视觉跟踪是计算机视觉的一项基本任务。然而,目前还没有系统的方法来分析视觉跟踪器。在本文中,我们提出了一种方法,可以帮助研究人员确定任何视觉跟踪器的优点和缺点。为此,我们将视觉跟踪视为一个孤立的问题,并将其分解为基本的和独立的子问题。每个子问题都被设计成与不同的跟踪环境相关联。通过评估特定子问题上的视觉跟踪器,我们可以确定它相对于该维度有多好。在我们的分解中总共有13个子问题。我们通过分析两个状态心脏跟踪器的工作条件来演示我们提出的方法的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thirteen Hard Cases in Visual Tracking
Visual tracking is a fundamental task in computer vision. However there has been no systematic way of analyzing visual trackers so far. In this paper we propose a method that can help researchers determine strengths and weaknesses of any visual tracker. To this end, we consider visual tracking as an isolated problem and decompose it into fundamental and independent subproblems. Each subproblem is designed to associate with a different tracking circumstance. By evaluating a visual tracker onto a specific subproblem, we can determine how good it is with respect to that dimension. In total we come up with thirteen subproblems in our decomposition. We demonstrate the use of our proposed method by analyzing working conditions of two state-of-theart trackers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1