改进的基于ga的ICF目标姿态测量

Wei Song, X. Liu, Yang Zhou, Yanan Zhang, Linyong Shen
{"title":"改进的基于ga的ICF目标姿态测量","authors":"Wei Song, X. Liu, Yang Zhou, Yanan Zhang, Linyong Shen","doi":"10.1109/ROBIO.2014.7090747","DOIUrl":null,"url":null,"abstract":"In Inertia Confinement Fusion (ICF) physical experiments, the accuracy of target positioning affects the successful rate of target hitting directly. A 3-CCD camera system is often used for tiny target measurement in ICF target positioning. Most of the current pose measurement methods utilize the well-known digital image processing technology to extract the target features in each image, then calculates the target's spatial coordinate and rotation matrix by integrating the feature values from three CCDs. Therefore, feature extraction errors in each image are superimposed in final result, which reduces the pose measurement precision. In this paper, we propose a solid model-based method which matching the target as a whole by the grey values in each image without utilizing image processing technology. The solid model matching optimistic problem is solved by an improved genetic algorithm (GA), called adaptive GA. Experiment is performed by using a 3-CCD camera system with general GA and adaptive GA respectively, the result shows the effectiveness of our adaptive GA in improving speed and accuracy.","PeriodicalId":289829,"journal":{"name":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved GA-based ICF target pose measurement\",\"authors\":\"Wei Song, X. Liu, Yang Zhou, Yanan Zhang, Linyong Shen\",\"doi\":\"10.1109/ROBIO.2014.7090747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Inertia Confinement Fusion (ICF) physical experiments, the accuracy of target positioning affects the successful rate of target hitting directly. A 3-CCD camera system is often used for tiny target measurement in ICF target positioning. Most of the current pose measurement methods utilize the well-known digital image processing technology to extract the target features in each image, then calculates the target's spatial coordinate and rotation matrix by integrating the feature values from three CCDs. Therefore, feature extraction errors in each image are superimposed in final result, which reduces the pose measurement precision. In this paper, we propose a solid model-based method which matching the target as a whole by the grey values in each image without utilizing image processing technology. The solid model matching optimistic problem is solved by an improved genetic algorithm (GA), called adaptive GA. Experiment is performed by using a 3-CCD camera system with general GA and adaptive GA respectively, the result shows the effectiveness of our adaptive GA in improving speed and accuracy.\",\"PeriodicalId\":289829,\"journal\":{\"name\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2014.7090747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2014.7090747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在惯性约束聚变(ICF)物理实验中,目标定位精度直接影响目标命中成功率。在ICF目标定位中,常采用3-CCD相机系统对微小目标进行测量。目前的姿态测量方法大多是利用众所周知的数字图像处理技术提取每幅图像中的目标特征,然后通过积分三个ccd的特征值计算目标的空间坐标和旋转矩阵。因此,最终结果会叠加每张图像的特征提取误差,降低姿态测量精度。本文提出了一种基于实体模型的方法,在不使用图像处理技术的情况下,通过每张图像的灰度值对目标进行整体匹配。采用一种改进的遗传算法(即自适应遗传算法)求解实体模型匹配乐观问题。在3-CCD相机系统上分别采用通用遗传算法和自适应遗传算法进行了实验,结果表明了自适应遗传算法在提高速度和精度方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved GA-based ICF target pose measurement
In Inertia Confinement Fusion (ICF) physical experiments, the accuracy of target positioning affects the successful rate of target hitting directly. A 3-CCD camera system is often used for tiny target measurement in ICF target positioning. Most of the current pose measurement methods utilize the well-known digital image processing technology to extract the target features in each image, then calculates the target's spatial coordinate and rotation matrix by integrating the feature values from three CCDs. Therefore, feature extraction errors in each image are superimposed in final result, which reduces the pose measurement precision. In this paper, we propose a solid model-based method which matching the target as a whole by the grey values in each image without utilizing image processing technology. The solid model matching optimistic problem is solved by an improved genetic algorithm (GA), called adaptive GA. Experiment is performed by using a 3-CCD camera system with general GA and adaptive GA respectively, the result shows the effectiveness of our adaptive GA in improving speed and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Velocity field control with energy compensation toward therapeutic exercise A control-oriented model of underwater snake robots Quadrupedal locomotion based on a muscular activation pattern with stretch-reflex Novelty detection in user behavioural models within ambient assisted living applications: An experimental evaluation Simultaneous allocations of multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1