心脏病分类的比较研究

Simge Ekiz, P. Erdoğmuş
{"title":"心脏病分类的比较研究","authors":"Simge Ekiz, P. Erdoğmuş","doi":"10.1109/EBBT.2017.7956761","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to compare two important machine learning platform results for the same dataset. With this aim, we conducted an experiment to classify heart disease both in Matlab© environment and WEKA©, by using six different algorithms. Linear SVM, Quadratic SVM, Cubic SVM, Medium Gaussian SVM, Decision Tree and Ensemble Subspace Discriminant machine learning approaches are used for classifying the heart disease.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Comparative study of heart disease classification\",\"authors\":\"Simge Ekiz, P. Erdoğmuş\",\"doi\":\"10.1109/EBBT.2017.7956761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to compare two important machine learning platform results for the same dataset. With this aim, we conducted an experiment to classify heart disease both in Matlab© environment and WEKA©, by using six different algorithms. Linear SVM, Quadratic SVM, Cubic SVM, Medium Gaussian SVM, Decision Tree and Ensemble Subspace Discriminant machine learning approaches are used for classifying the heart disease.\",\"PeriodicalId\":293165,\"journal\":{\"name\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBBT.2017.7956761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文的目的是比较两个重要的机器学习平台对同一数据集的结果。为此,我们分别在Matlab©和WEKA©环境下,使用六种不同的算法对心脏病进行分类实验。采用线性支持向量机、二次支持向量机、三次支持向量机、中高斯支持向量机、决策树和集合子空间判别机器学习方法对心脏病进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study of heart disease classification
The aim of this paper is to compare two important machine learning platform results for the same dataset. With this aim, we conducted an experiment to classify heart disease both in Matlab© environment and WEKA©, by using six different algorithms. Linear SVM, Quadratic SVM, Cubic SVM, Medium Gaussian SVM, Decision Tree and Ensemble Subspace Discriminant machine learning approaches are used for classifying the heart disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of injured kidney in computed tomography Predictive cruise control Effects of aerobic capacity, age and gender on brain neural matter Electromagnetic radiation interaction and pollution measurements Characterization of a bend sensor for neuroprosthetic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1