Mohammad Alaul Haque Monil, Seyong Lee, J. Vetter, A. Malony
{"title":"比较CPU和GPU架构之间的LLC-Memory流量","authors":"Mohammad Alaul Haque Monil, Seyong Lee, J. Vetter, A. Malony","doi":"10.1109/rsdha54838.2021.00007","DOIUrl":null,"url":null,"abstract":"The cache hierarchy in modern CPUs and GPUs is becoming increasingly complex, which makes understanding the handshake between the memory access patterns and the cache hierarchy difficult. Moreover, the details of different cache policies are not publicly available. Therefore, the research community relies on observation to understand the relationship between memory access patterns and cache hierarchy. Our previous studies delved into the different microarchitectures of Intel CPUs. In this study, GPUs from NVIDIA and AMD are considered. Even though the execution models in CPUs and GPUs are distinct, this study attempts to correlate the behavior of the cache hierarchy of CPUs and GPUs. Using the knowledge gathered from studying Intel CPUs, the similarities and dissimilarities between CPUs and GPUs are identified. Through model evaluation, this study provides a proof of concept that traffic between last-level cache and memory can be predicted for sequential streaming and strided access patterns on GPUs.","PeriodicalId":119942,"journal":{"name":"2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing LLC-Memory Traffic between CPU and GPU Architectures\",\"authors\":\"Mohammad Alaul Haque Monil, Seyong Lee, J. Vetter, A. Malony\",\"doi\":\"10.1109/rsdha54838.2021.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cache hierarchy in modern CPUs and GPUs is becoming increasingly complex, which makes understanding the handshake between the memory access patterns and the cache hierarchy difficult. Moreover, the details of different cache policies are not publicly available. Therefore, the research community relies on observation to understand the relationship between memory access patterns and cache hierarchy. Our previous studies delved into the different microarchitectures of Intel CPUs. In this study, GPUs from NVIDIA and AMD are considered. Even though the execution models in CPUs and GPUs are distinct, this study attempts to correlate the behavior of the cache hierarchy of CPUs and GPUs. Using the knowledge gathered from studying Intel CPUs, the similarities and dissimilarities between CPUs and GPUs are identified. Through model evaluation, this study provides a proof of concept that traffic between last-level cache and memory can be predicted for sequential streaming and strided access patterns on GPUs.\",\"PeriodicalId\":119942,\"journal\":{\"name\":\"2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/rsdha54838.2021.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rsdha54838.2021.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing LLC-Memory Traffic between CPU and GPU Architectures
The cache hierarchy in modern CPUs and GPUs is becoming increasingly complex, which makes understanding the handshake between the memory access patterns and the cache hierarchy difficult. Moreover, the details of different cache policies are not publicly available. Therefore, the research community relies on observation to understand the relationship between memory access patterns and cache hierarchy. Our previous studies delved into the different microarchitectures of Intel CPUs. In this study, GPUs from NVIDIA and AMD are considered. Even though the execution models in CPUs and GPUs are distinct, this study attempts to correlate the behavior of the cache hierarchy of CPUs and GPUs. Using the knowledge gathered from studying Intel CPUs, the similarities and dissimilarities between CPUs and GPUs are identified. Through model evaluation, this study provides a proof of concept that traffic between last-level cache and memory can be predicted for sequential streaming and strided access patterns on GPUs.